Skip to main content
Log in

Role of water molecules in protein-nucleic acid interactions: visualization of a model highly hydrated complex structure of Inosine 5′-monophosphate and L-Serine (2C10H13N4O8P·C3H7NO3·12H2O) at atomic resolution

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of a dodecahydrated co-complex between two Inosine 5′-monophosphate (IMP) and one L-serine, the first of its kind reported, has been determined at atomic resolution by X-ray crystallographic methods. The crystal belongs to a monoclinic space group, P21, with the cell dimensionsa=8.695(7),b=21.898(6),c=12.374(3)Å, β=110.59(3)°. This structure reveals the recognition mechanism of serine to the nucleotides through direct and water-mediated hydrogen bonds. The phosphate oxygen (O22) seems to prefer the nonspecific interaction with the functional sites of serine (N...O22=2.735, OG...O22=2.970, O1...O22 =3.121 Å), whereas the bases prefer specific (N17...N=3.199, N23...O2=2.784 Å) bondings. The solvent-mediated hydrogen bonds N17...W3...N27 endow extra stabilization to the stacked bases. The presence of hydrogen-bonded water spines and their interplay in the specific and nonspecific bindings with potential ligands indicate the functional involvement of solvent molecules through cooperative donor-acceptor network and could act as viable centers of intricate interactions in protein-DNA complexation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornberg, A.; Baker, A. T.DNA Replication (2nd Ed.); W. H. Freeman & Co.: New York, 1972.

    Google Scholar 

  2. Roger, L. P.; Adams, J. T. K.; David, P. L.The Biochemistry of the Nucleic Acid (Xth Ed.); Chapman and Hall: New York, 1986.

    Google Scholar 

  3. Saenger, W.Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984.

    Google Scholar 

  4. Anderson, E. J.; Ptashne, M.; Harrison, C. S.Nature 1985,316, 596.

    Google Scholar 

  5. Brennan, G. B.; Takeda, Y.; Kim, J.; Aderson, W. F.; Matthews, B. W.J. Mol. Biol. 1986,188, 115.

    Google Scholar 

  6. Christian, A. F.; Grable, J.; Melia, M.; Samudzi, C.; Jacobson, J. L.; Wang, B. C.; Greene, P.; Boyer, W. B.; Rosenberg, J. M.Nature 1984,309, 327.

    Google Scholar 

  7. Ferre, A. R.; Amone, D.; Burley, S. K.Nature 1993,363, 38.

    Google Scholar 

  8. Jordan, S. R.; Pabo, C. O.Science 1988,242, 893.

    Google Scholar 

  9. Otwinowski, Z.; Schevitz, R. W.; Zhang, R. G. Lawson, C. L.; Joachimiak, A.; Marmorstein, R. Q.; Luisi, B. F.; Sigler, P. B.Nature 1988,335, 321.

    Google Scholar 

  10. Palreleich, N. P.; Pabo, C. O.Science 1991,252, 809.

    Google Scholar 

  11. Seveik, C.; Hill, C. P.Acta. Crystallogr. 1993,D49, 257.

    Google Scholar 

  12. Suck, D.; Lahm, A.; Oefner, C.Nature 1988,332, 464.

    Google Scholar 

  13. Winkler, F. K.; Bennert, D. W.; Oefner, C.; Tsernoglou, D.; Brown, R. S.; Heathman, S. P.; Bryan, R. K.; Martin, P. D.; Petratos, K.; Wilson, K. S.,J. EMBO. 1993,12, 1781.

    Google Scholar 

  14. Wolberger, C.; Harrison, C. S.J. Mol. Biol. 1987,196, 951.

    Google Scholar 

  15. Clarke, N. D.; Beamer, L. J.; Goldberg, H. R.; Berkower, C.; Pabo, C. O.Science 1991,254, 267.

    Google Scholar 

  16. Litinov, I. A.; Kataev, V. E.; Lenstra, A. T. H.; Geise, H. J.Acta Crystallogr. 1992,C48, 1286.

    Google Scholar 

  17. Shibata, M.; Takenaka, A.; Sasada, Y.Acta Crystallogr. 1985,C41, 1499.

    Google Scholar 

  18. Shibata, M.; Takenaka, A.; Sasada, Y.; Ohki, M.,Acta. Crystallogr. 1985,C41, 1354.

    Google Scholar 

  19. Mukhopadhyay, B. P.; Ghosh, S.; Banerjee, A.Abstract, IUCr Conference at Beijing, China August,1993.

  20. Rao, R. T.; Sundaralingam, M.J. Am. Chem. Soc. 1969,91, 1210.

    Google Scholar 

  21. Sriram, M.; Liaw, Y. C.; Gao, Y. G.; Wang, A. H. J.Acta. Crystallogr. 1991,C47, 507.

    Google Scholar 

  22. Sheldrick, G. M. SHELX76Program for crystal structure determination and refinement; Univ. of Cambridge: England, 1976.

    Google Scholar 

  23. Nagashima, N.; Wakabayashi, K.; Matzuzaki, T.; Iitaka, Y.Acta. Crystallogr. 1974,B30, 320.

    Google Scholar 

  24. Munns, A. R. I.; Tollin, P.Acta. Crystallogr. 1970,B26, 1101.

    Google Scholar 

  25. Subramanian, E.Cryst. Struct. Comm. 1979,8, 777.

    Google Scholar 

  26. Thewalt, U.; Bugg, C. E.; Marsh, R. E.Acta. Crystallogr. 1970,B26, 1089.

    Google Scholar 

  27. Frey, M. N.; Lehmann, M. S.; Koetzle, T. F.; Hamilton, W. C.Acta. Crystallogr. 1973,B29, 876.

    Google Scholar 

  28. Jeffrey, G. A.; Saenger, W.Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, B.P., Ghosh, S. & Banerjee, A. Role of water molecules in protein-nucleic acid interactions: visualization of a model highly hydrated complex structure of Inosine 5′-monophosphate and L-Serine (2C10H13N4O8P·C3H7NO3·12H2O) at atomic resolution. J Chem Crystallogr 25, 477–485 (1995). https://doi.org/10.1007/BF01665704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01665704

Key Words

Navigation