Molecular and Cellular Biochemistry

, Volume 1, Issue 2, pp 157–168 | Cite as

The biosynthesis of methionine

  • H. Rüdiger
  • L. Jaenicke
General and Review Articles a. invited review articles

Summary

The methylation of the thiol group of homocysteine leading to methionine is a biochemical reaction of particular interest since it represents a crossroad of the action of two vitamins, folic acid and cobalamin, both in bacteria and in animals. This enzymic reaction, its mechanism and its regulation which has been studied in detail in several laboratories is discussed. Another route which does not require cobalamin occurs in bacteria and plants. Bacteria possessing both pathways of methionine synthesis show regulatory interconnections between them. Plants which generally are devoid of cobalamin synthesize methionine solely by the cobalaminindependent pathway the mechanism of which is as yet not fully understood.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. F. C. Clark, K. A. Marcker, “Coding response of N-formyl-methionyl-sRNA to UUG”, Nature 207, 1038–1039 (1965)Google Scholar
  2. [2]
    D. Söll, “Enzymatic modification of transfer RNA”, Science 173, 293–299 (1971).Google Scholar
  3. [3]
    W. K. Paik, S. Kim, “Protein methylation”, Science 174, 114–119 (1971).Google Scholar
  4. [4]
    P. Laduron, “N-Methylation of dopamine to epinine in brain tissue using N-methyltetrahydrofolic acid as the methyl donor”, Nature (New Biology) 238 (85), 212–213 (1972).Google Scholar
  5. [5]
    F. M. Huennekens, “Biochemical functions and interrelationships of folic acid and vitamin B12”, Progress in Hematology 5, 83–104 (1966).Google Scholar
  6. [6]
    H. A. Barker, “Biochemical functions of corrinoid compounds”, Biochem. J. 105, 1–15 (1967).Google Scholar
  7. [7]
    H. P. C. Hogenkamp, “Enzymatic reactions involving corrinoids”, Ann. Rev. Biochem. 37, 225–248 (1968).Google Scholar
  8. [8]
    R. L. Blakley, “Tetrahydrofolate in the biosynthesis of methyl groups and methane”, in: Frontiers of Biology (eds. A. Neuberger and E. L. Tatum), The Biochemistry of Folic Acid and Related Pteridines, North Holland Publishing Company, Amsterdam 1969, p. 332–362.Google Scholar
  9. [9]
    H. Weissbach, R. T. Taylor, “Roles of vitamin B12 and folic acid in methionine biosynthesis”, Vitam. Horm. 28, 415–440 (1970).Google Scholar
  10. [10]
    T. C. Stadtman, “Vitamin B12”, Science 171, 859–867 (1971).Google Scholar
  11. [11]
    H. A. Barker, “Corrinoid-dependent enzymic reactions”, Ann. Rev. Biochem. 41, 55–90 (1972).Google Scholar
  12. [12]
    J. M. Wood, D. G. Brown, “The chemistry of vitamin B12 enzymes”, in: Structure and Bonding (eds. J. D. Dunitz, P. Hemmerich, J. A. Ibers, C. K. Jörgensen, J. B. Neilands, R. S. Nyholm, D. Reinen and R. J. P. Williams), Springer Verlag, Heidelberg 1972, Vol. 11, p. 47–105.Google Scholar
  13. [13]
    J. R. Guest, C. W. Helleiner, M. Cross, D. D. Woods, “Cobalamin and the synthesis of methionine by ultrasonic extracts ofEscherichia coli”, Biochem. J. 76, 396–405 (1960).Google Scholar
  14. [14]
    J. F. Morningstar, R. L. Kisliuk, “Interrelations between two pathways of methionine biosynthesis inAerobacter aerogenes”, J. General Microbiol. 39, 43–51 (1965).Google Scholar
  15. [15]
    G. Wagner, “5-Methyl-Tetrahydropteroyl-Heptaglutaminsäure als Cofaktor der Vitamin B12-unabhängigen Methionin-Synthese inSalmonella typhimurium”, Thesis, University of Cologne 1972.Google Scholar
  16. [16]
    J. H. Mangum, K. G. Scrimgeour, “Cofactor requirements and intermediates in methionine biosynthesis”, Fed. Proc. 21, 242 (1962).Google Scholar
  17. [17]
    S. Rosenthal, L. C. Smith, J. M. Buchanan, “Enzymatic synthesis of the methyl group of methionine”, J. Biol. Chem. 240, 836–843 (1965).Google Scholar
  18. [18]
    J. H. Mangum, B. W. Steuart, J. A. North, “The isolation of N5-methyltetrahydrofolate-homocysteine transmethylase from bovine brain”, Arch. Biochem. Biophys. 148, 63–69 (1972).Google Scholar
  19. [19]
    H. Rüdiger, L. Jaenicke, “Methionine synthetase: existence and interconversion of two enzyme species”, European J. Biochem. 16, 92–95 (1970).Google Scholar
  20. [20]
    J. M. Griffith, L. J. Daniels, “Methionine biosynthesis inOchromonas malhamensis”, Arch. Biochem. Biophys. 134, 463–472 (1969).Google Scholar
  21. [21]
    B. D. Lago, A. L. Demain, “Alternate requirement for vitamin B12 or methionine in mutants ofPseudomonas denitrificans, a vitamin B12-producing bacterium”, J. Bacteriol. 99, 347–349 (1969).Google Scholar
  22. [22]
    K. Fujii, “Studies on formation and function of vitamin B12 and related compounds in hydrocarbonutilizing microorganisms”, Thesis, University of Kyoto, 1970.Google Scholar
  23. [23]
    H. Ohmori, K. Sato, S. Shimizu, S. Fukui, “Confirmation of a cobalamin-dependent methionine synthesizing system inStreptomyces olivaceus”, Agr. Biol. Chem. 35, 338–343 (1971).Google Scholar
  24. [24]
    S. E. Cauthen, M. A. Foster, D. D. Woods, “Methionine synthesis by extracts ofSalmonella typhimurium”, Biochem. J. 98, 630–635 (1966).Google Scholar
  25. [25]
    S. E. Cauthen, J. R. Pattison, J. Lascelles, “Vitamin B12 in photosynthetic bacteria and methionine synthesis byRhodopseudomonas spheroides”, Biochem. J. 102, 774–781 (1967).Google Scholar
  26. [26]
    J. Janicki, F. Pedziwilk, J. Skupin, J. Kowalczyk, K. Nowakowska, K. Trojanowska, “The role of corrinoid protein complexes in the synthesis of the methionine methyl group”, Bull. Acad. Polon. Sci., Cl. V, 15, 191–195 (1967).Google Scholar
  27. [27]
    J. Stavrianopoulos, “Die Methionin-Synthetase vonEscherichia coli. Reinigung, Eigenschaften und Reaktionsmechanismus”, Thesis, University of Cologne, 1967.Google Scholar
  28. [28]
    M. Viscontini, J. Bieri, “Zur Frage des ‘aktiven Formaldehyds’”, Helv. Chim. Acta 55, 21–31 (1972).Google Scholar
  29. [29]
    H. Rüdiger, “The relative configuration of N5methyl-L-tetrahydrofolic acid”, FEBS Letters 11, 265–267 (1970).Google Scholar
  30. [30]
    B. V. Ramasastri, R. L. Blakley, “Optical rotations of the diastereomers of dl,L-methylenetetrahydrofolate”, Biochem. Biophys. Res. Com. 12, 478–482 (1963).Google Scholar
  31. [31]
    Y. C. Yeh, D. M. Greenberg, “Purification and properties of N5,N10-methylenetetrahydrofolate dehydrogenase of calf thymus”, Biochim. Biophys. Acta 105, 279–291 (1965).Google Scholar
  32. [32]
    B. T. Kaufman, K. O. Donaldson, J. C. Keresztésy, “Chromatographic separation of the diastereomers of dl,L-5,10-methylenetetrahydrofolate”, J. Biol. Chem. 238, 1498–1500 (1963).Google Scholar
  33. [33]
    R. T. Taylor, M. L. Hanna, “Escherichia coli B N5methyltetrahydrofolate-homocysteine cobalamin methyltransferase: binding of the folate substrate to the enzyme”, Arch. Biochem. Biophys. 151, 401–413 (1972).Google Scholar
  34. [34]
    H. Rüdiger, H. Volger, H. Spieβhöfer, unpublished results.Google Scholar
  35. [35]
    H. Weissbach, B. Redfield, H. Dickerman, “Cobamide-dependent synthesis of methionine: light reactivation of an inhibited enzyme”, Biochem. Biophys. Res. Com. 17, 17–22 (1964).Google Scholar
  36. [36]
    N. Brot, B. Redfield, H. Weissbach, “Reduction and alkylation of the cobamide prosthetic group in the enzymatic synthesis of methionine”, Biochem. Biophys. Res. Com. 18, 18–23 (1965).Google Scholar
  37. [37]
    H. Weissbach, R. Taylor, “Role of vitamin B12 in methionine synthesis”, Fed. Proc. 25, 1649–1656 (1967).Google Scholar
  38. [38]
    R. T. Taylor, H. Weissbach, “N5-methyltetrahydro folate-homocysteine transmethylase”, J. Biol. Chem. 242, 1509–1516 (1967).Google Scholar
  39. [39]
    R. T. Taylor, C. Whitfield, H. Weissbach, “Chemical propylation of vitamin B12 transmethylase: anomalous behavior of S-adenosyl-L-methionine”, Arch. Biochem. Biophys. 125, 240–252 (1968).Google Scholar
  40. [40]
    G. T. Burke, J. H. Mangum, J. D. Brodie, “Mechanism of mammalian cobalamin-dependent methionine biosynthesis”, Biochemistry 10, 3079–3085 (1971).Google Scholar
  41. [41]
    H. Weissbach, B. G. Redfield, H. Dickerman, “Effect of vitamin B12 analogues on methionine formation from N5-methyltetrahydrofolic acid”, J. Biol. Chem. 239, 146–148 (1964).Google Scholar
  42. [42]
    H. Weissbach, B. G. Redfield, H. Dickerman, “Studies on methyl transfer from 5,6-dimethylbenzimidazolylcobamide (methyl B12) to homocysteine”, J. Biol. Chem. 239, 1942–1946 (1964).Google Scholar
  43. [43]
    R. T. Taylor, “Methylcobalamin as a substrate at a separate site onEscherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase”, Arch. Biochem. Biophys. 144, 352–362 (1971).Google Scholar
  44. [44]
    H. Rüdiger, L. Jaenicke, “On the role of S-adenosylmethionine in the vitamin B12 dependent methionine biosynthesis”, European J. Biochem. 10, 557–560 (1969).Google Scholar
  45. [45]
    J. Stavrianopoulos, L. Jaenicke, “Reaktionsschritte der Methionin-Synthese beiEscherichia coli”, European J. Biochem. 3, 95–106 (1967).Google Scholar
  46. [46]
    R. T. Taylor, M. L. Hanna, “Escherichia coli B cobalamin methyltransferase: ability of diaphorases and lipoamide dehydrogenases to function as reducing agents”, Arch. Biochem. Biophys. 139, 149–163 (1970).Google Scholar
  47. [47]
    E. Otaiza, L. Jaenicke, “Die Reduktionsreaktion in der Methioninsynthese. Eine NADH:FAD-Oxidoreduktase ausEscherichia coli B”, Z. Physiol. Chem. 352, 385–398 (1971).Google Scholar
  48. [48]
    L. Jaenicke, “Enzymatic determination of folate compounds”, in: Methods in Enzymology, (D. B. McCormick, L. D. Wright eds.), Vol. 18, Part B, p. 605–614, Acad. Press, N. Y., London, 1971.Google Scholar
  49. [49]
    R. T. Taylor, H. Weissbach, “Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: Sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5methyltetrahydrofolate”, Arch. Biochem. Biophys. 129, 728–744 (1969).Google Scholar
  50. [50]
    R. T. Taylor, H. Weissbach, “Escherichia coli B N5methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism of the methyl group transfer”, Arch. Biochem. Biophys. 129, 745–766 (1969).Google Scholar
  51. [51]
    H. Rüdiger, L. Jaenicke, “Methionine synthesis: demonstration of the reversibility of the reaction”, FEBS Letters 4, 316–318 (1969).Google Scholar
  52. [52]
    R. T. Taylor, H. Weissbach, “N5-Methyltetrahydrofolate-homocysteine transmethylase”, J. Biol. Chem. 242, 1502–1508 (1967).Google Scholar
  53. [53]
    R. T. Taylor, H. Weissbach, “N5-Methyltetrahydrofolate-homocysteine (vitamin B12) methyltransferase (Escherichia coli B)”, in: Methods in Enzymology (eds. H. Tabor, C. W. Tabor), Vol. 17, Part B, p. 379–388, Acad. Press, N. Y., London, 1972.Google Scholar
  54. [54]
    H. Rüdiger, unpublished results.Google Scholar
  55. [55]
    J. M. Wood, F. S. Kennedy, R. S. Wolfe, “The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12”, Biochemistry 7, 1707–1713 (1968).Google Scholar
  56. [56]
    H. J. Sauer, unpublished results.Google Scholar
  57. [57]
    R. T. Taylor, “Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: gel-filtration behavior of apoenzyme and holoenzymes”, Biochim. Biophys. Acta 242, 355–364 (1971).Google Scholar
  58. [58]
    P. Andrews, “The gel-filtration behaviour of proteins related to their molecular weight over a wide range”, Biochem. J. 96, 595–606 (1965).Google Scholar
  59. [59]
    R. T. Taylor, “Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: resolution and reconstitution of holoenzyme”, Arch. Biochem. Biophys. 137, 529–546 (1970).Google Scholar
  60. [60]
    H. Rüdiger, “The vitamin B12-dependent methionine synthetase; the cycle of transmethylation”, European J. Biochem. 21, 264–268 (1971).Google Scholar
  61. [61]
    M. Alizade, “Versuche zur Reinigung des Apoenzyms der Methioninsynthetase”, Diploma Thesis, University of Cologne, 1967.Google Scholar
  62. [62]
    J. Galivan, F. M. Huennekens, “Resolution of the methionine synthetase system fromEscherichia coli K-12”, Biochem. Biophys. Res. Com. 38, 46–51 (1970).Google Scholar
  63. [63]
    J. Galivan, S. Murphy, D. Jacobsen, “Multiple protein components of methionine synthetase”, Fed. Proc. 29, 334 (1970).Google Scholar
  64. [64]
    R. T. Taylor, M. L. Hanna, “Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase:catalysis by a reconstituted methyl14C-cobalamin holoenzyme and the function of Sadenosyl-L-methionine”, Arch. Biochem. Biophys. 137, 453–459 (1970).Google Scholar
  65. [65]
    N. Brot, H. Weissbach, “The role of cobamides in methionine synthesis (enzymatic formation of holoenzyme)”, J. Biol. Chem. 241, 2024–2028 (1966).Google Scholar
  66. [66]
    F. Rosales, S. J. Ritari, W. Sakami, “Formation of the N5-methyltetrahydrofolate-homocysteine methyltransferase holoenzyme from apoenzyme and adenosyl-B12”, Biochem. Biophys. Res. Com. 40, 271–276 (1970).Google Scholar
  67. [67]
    R. T. Taylor, H. Weissbach, “Role of S-adenosylmethionine in vitamin B12-dependent methionine synthesis”, J. Biol. Chem. 241, 3641–3642 (1966).Google Scholar
  68. [68]
    R. T. Taylor, H. Weissbach, “N5-Methyltetrahydrofolate-homocysteine transmethylase; role of S-adenosylmethionine in vitamin B12-dependent methionine synthesis”, J. Biol. Chem. 242, 1517–1527 (1967).Google Scholar
  69. [69]
    S. S. Kerwar, J. H. Mangum, K. G. Scrimgeour, J. D. Brodie, F. M. Huennekens, “Interrelationships of adenosyl methionine and methyl-B12 in the biosynthesis of methionine”, Arch. Biochem. Biophys. 116, 305–318 (1966).Google Scholar
  70. [70]
    N. Brot, H. Weissbach, “Enzymatic synthesis of methionine: chemical alkylation of the enzyme-bound cobamide”, J. Biol. Chem. 240, 3064–3070 (1965).Google Scholar
  71. [71]
    R. T. Taylor, H. Weissbach, “Isolation of methyl-B12 fromEscherichia coli B N5-methyl-H4-folatehomocysteine vitamin-B12 transmethylase”, Biochem. Biophys. Res. Com. 27, 398–404 (1967).Google Scholar
  72. [72]
    R. T. Taylor, H. Weissbach, “Escherichia coli B N5-methyltetrahydrofolate-homocysteine vitamin B12 transmethylase: formation and photolability of a methylcobalamin enzyme”, Arch. Biochem. Biophys. 123, 109–126 (1968).Google Scholar
  73. [73]
    E. L. Smith, “Vitamin B12”, Methuen, London 1965, p. 60.Google Scholar
  74. [74]
    G. N. Schrauzer, J. W. Sibert, R. J. Windgassen, “Photochemical and thermal cobalt-carbon bond cleavage in alkylcobalamins and related organometallic compounds”, J. American Chem. Soc. 90, 6681–6688 (1968).Google Scholar
  75. [75]
    J. D. Brodie, “Origin of photolabile methyl groups in methionine biosynthesis”, Biochem. Biophys. Res. Com. 26, 261–264 (1967).Google Scholar
  76. [76]
    B. M. Babior, H. Kon, H. Lecar, “The mechanism of action of ethanolamine deaminase. The photolysis of enzyme-bound alkylcobalamins”, Biochemistry 8, 2662–2669 (1969).Google Scholar
  77. [77]
    R. T. Taylor, H. Weissbach, “Enzymic synthesis of methionine: formation of a radioactive cobamide enzyme with N5-methyl-14C-tetrahydrofolate”, Arch. Biochem. Biophys. 119, 572–579 (1967).Google Scholar
  78. [78]
    H. Weissbach, A. Peterkofsky, B. G. Redfield, H. Dickerman, “Studies of the terminal reaction in the biosynthesis of methionine”, J. Biol. Chem. 238, 3318–3324 (1963).Google Scholar
  79. [79]
    R. Sieck, “Reinigung und Chemie des Enzyms Methioninsynthetase”, Diploma Thesis, University of Cologne, 1972.Google Scholar
  80. [80]
    H. P. C. Hogenkamp, S. Holmes, “Polarography of cobalamines and cobinamides”, Biochemistry 9, 1886–1892 (1970).Google Scholar
  81. [81]
    R. Yamada, S. Shimizu, S. Fukui, “Disproportionation of vitamin B12r under various mild conditions”, Biochemistry 7, 1713–1718 (1968).Google Scholar
  82. [82]
    G. L. Cantoni, in: Transmethylation and methionine biosynthesis, (S. K. Shapiro and F. Schlenk, eds.), The University of Chicago Press, Chicago 1965, p. 25.Google Scholar
  83. [83]
    G. Agnes, H. A. O. Hill, J. M. Pratt, S. C. Ridsdale, F. S. Kennedy, R. J. P. Williams, “Methyl transfer from methyl vitamin B12”, Biochim. Biophys. Acta 252, 207–211 (1971).Google Scholar
  84. [84]
    H. Rüdiger, L. Jaenicke, “Kinetic evidence for an enzyme-bound intermediate in the biosynthesis of methionine”, FEBS Letters 1, 293–294 (1968).Google Scholar
  85. [85]
    R. T. Taylor, M. L. Hanna, “Spectrophotometric evidence for the formation of anEscherichia coli B B12s methyltransferase”, Biochem. Biophys. Res. Com. 38, 758–764 (1970).Google Scholar
  86. [86]
    J. H. Mangum, J. A. North, “Isolation of a cobalamin containing 5-methyltetrahydrofolate-homocysteine transmethylase from mammalian kidney”, Biochemistry 10, 3765–3769 (1971).Google Scholar
  87. [87]
    R. T. Taylor, H. Weissbach, “Cobamide-dependent synthesis of methionine”, Fed. Proc. 26, 343 (1967).Google Scholar
  88. [88]
    H. Rüdiger, L. Jaenicke, “Ein regulierender Faktor der Methionin-Biosynthese”, Naturwissenschaften 57, 132–133 (1970).Google Scholar
  89. [89]
    H. Rüdiger, “A new activator in the vitamin B12dependent methionine biosynthesis ofEscherichia coli”, FEBS Letters 27, 39–40 (1972).Google Scholar
  90. [90]
    W. Sakami, I. Ukstins, “Enzymatic methylation of homocysteine by a synthetic tetrahydrofolate derivative”, J. Biol. Chem. 236, PC 50-PC 51 (1961).Google Scholar
  91. [91]
    R. E. Loughlin, H. L. Elford, J. M. Buchanan, “Enzymatic synthesis of the methyl group of methionine. Isolation of a cobalamin-containing transmethylase (5-methyltetrahydrofolate-homocysteine) from mammalian liver”, J. Biol. Chem. 239, 2888–2895 (1964).Google Scholar
  92. [92]
    H.-J. Sauer, L. Jaenicke, “Einfacher Test zur Messung der Methioninsynthetase-Aktivität und seine Anwendungsmöglichkeiten in der Klinik”, Klin. Wochenschr. 50, 986–990 (1972).Google Scholar
  93. [93]
    H.-J. Sauer, K. Wilms, W. Willmanns, L. Jaenicke, “The activity of the methionine synthetase (5-methyl-5,6,7,8-tetrahydrofolate: homocysteine methyltransferase) as an indicator for the proliferation tendency of a cell population” in “Erythrocytes, Thrombocytes, Leukocytes” (E. Gerlach, K. Moser, E. Deutsch, W. Willmanns, eds.), II. Intern. Symposium, Vienna 1972, G. Thieme Verlag, Stuttgart, 1973, p. 368–371.Google Scholar
  94. [94]
    J. D. Finkelstein, W. E. Kyle, B. J. Harris, “Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue”, Arch. Biochem. Biophys. 146, 84–92 (1971).Google Scholar
  95. [95]
    T. Nakazawa, K. Yoshiba, M. Takasugi, “Activity of methyl transferase induced by vitamin B12 in a cell line (CNTS) established from rat brain”, Bitamin 42, 193 (1970), cited after Chem. Abstr. 74, 10889P (1971).Google Scholar
  96. [96]
    J. H. Mangum, J. A. North, “Vitamin B12-dependent methionine biosynthesis in HE p-2 cells”, Biochem. Biophys. Res. Com. 32, 105–110 (1968).Google Scholar
  97. [97]
    J. H. Mangum, B. M. Murray, J. A. North, “Vitamin B12 dependent methionine biosynthesis in cultured mammalian cells”, Biochemistry 8, 3496–3499 (1969).Google Scholar
  98. [98]
    J. H. Mangum, J. A. North, “Isolation of cobalamin dependent 5-methyltetrahydrofolate-homocysteine transmethylase from mammalian tissues”, Fed. Proc. 30, 1068 (1971).Google Scholar
  99. [99]
    S. S. Kerwar, C. Spears, B. McAuslan, H. Weissbach, “Studies on vitamin B12 metabolism in HeLa cells”, Arch. Biochem. Biophys. 142, 231–237 (1971).Google Scholar
  100. [100]
    C. L. Krumdieck, C. M. Baugh, “The solid-phase synthesis of polyglutamates of folic acid”, Biochemistry 8, 1568–1572 (1969).Google Scholar
  101. [101]
    H. A. Godwin, I. M. Rosenberg, C. R. Ferenz, P. M. Jacobs, J. Meienhofer, “The synthesis of biologically active pteroyloligo-L-glutamates (folic acid conjugates). Evaluation of [3H]-pteroylheptaglutamate for metabolic studies”, J. Biol. Chem. 247, 2266–2271 (1972).Google Scholar
  102. [102]
    L. Milner, C. Whitfield, H. Weissbach, “Effect of L-methionine and vitamin B12 on methionine biosynthesis inEscherichia coli”, Arch. Biochem. Biophys. 133, 413–419 (1969).Google Scholar
  103. [103]
    H. F. Kung, C. Spears, R. C. Greene, H. Weissbach, “Regulation of the terminal reactions in methionine biosynthesis by vitamin B12 and methionine”, Arch. Biochem. Biophys. 150, 23–31 (1972).Google Scholar
  104. [104]
    J. Dawes, M. A. Foster, “Vitamin B12 and methionine synthesis in Escherichia coli”, Biochim. Biophys. Acta 237, 455–464 (1971).Google Scholar
  105. [105]
    E. Burton, J. Selhub, W. Sakami, “The substrate specificity of 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase”, Biochem. J. 111, 793–795 (1969).Google Scholar
  106. [106]
    J. L. Botsford, L. W. Parks, “Role of S-adenosylmethionine in methionine biosynthesis in yeast”, J. Bacteriol. 94, 966–971 (1967).Google Scholar
  107. [107]
    R. H. Wilson, “The regulation by methionine of three inducible enzymes inCoprinus lagopus”, Biochem. J. 118, 16P (1970).Google Scholar
  108. [108]
    A. R. Salem, M. A. Foster, R. H. Wilson, “Methylation of homocysteine inCoprinus lagopus”, Biochem. J. 118, 16P (1970).Google Scholar
  109. [109]
    A. R. Salem, M. A. Foster, “The microbial biosynthesis of methionine”, Biochem. J. 127, 845–853 (1972).Google Scholar
  110. [110]
    A. R. Salem, J. R. Pattison, M. A. Foster, “Folic acid and the methylation of homocysteine byBacillus subtilis”, Biochem. J. 126, 993–1004 (1972).Google Scholar
  111. [111]
    C. D. Whitfield, H. Weissbach, “Binding of substrate to N5-methyl-tetrahydropteroyltriglutamate-homocysteine transmethylase”, Biochem. Biophys. Res. Com. 33, 996–1003 (1968).Google Scholar
  112. [112]
    C. D. Whitfield, E. J. Steers Jr., H. Weissbach, “Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase”, J. Biol. Chem. 245, 390–401 (1970).Google Scholar
  113. [113]
    C. D. Whitfield, H. Weissbach, “Binding of the folate substrate to 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase”, J. Biol. Chem. 245, 402–409 (1970).Google Scholar
  114. [114]
    E. G. Burton, W. Sakami, “The formation of methionine from the monoglutamate form of methyltetrahydrofolate by higher plants”, Biochem. Biophys. Res. Com. 36, 228–234 (1969).Google Scholar
  115. [115]
    E. Burton, W. Sakami, “Methylation of homocysteine by folate derivatives”, Fed. Proc. 26, 387 (1967).Google Scholar
  116. [116]
    W. A. Dodd, E. A. Cossins, “Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds”, Biochim. Biophys. Acta 201, 461–470 (1970).Google Scholar
  117. [117]
    S. P. J. Shah, E. A. Cossins, “Pteroylglutamates and methionine biosynthesis in isolated chloroplasts”, FEBS Letters 7, 267–270 (1970).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1973

Authors and Affiliations

  • H. Rüdiger
    • 1
  • L. Jaenicke
    • 1
  1. 1.Institut für BiochemieKölnGermany

Personalised recommendations