Skip to main content
Log in

The cytidine mechanism and methylation pathway in the formation of N-methylated ethanolamine phosphoglycerides in Neurospora crassa

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

InNeurospora crassa, phospholipids containing ethanolamine, monomethylaminoethanol, dimethylaminoethanol and choline are formed by a pathway involving cytidine nucleotides. The rate of formation of these phospholipids does not appear to be dependent on the fatty acid composition of diacylglycerols acting as acceptors of phosphorylated aminoethanols. The presence of choline in the growth medium represses the activity of enzymes of the methylation pathway for the biosynthesis of 1,2-diacyl-sn-glycero-3-phosphorylcholine (diacyl-GPCh) and induces the activity of enzymes of the cytidine mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCh:

choline phosphate

PDMAE:

dimethylaminoethanol phosphate

PMMAE:

monomethylaminoethanol phosphate

PEa:

ethanolamine phosphate

Diacyl-GPEa:

1,2-diacyl-sn-glycero-3-phosphoryl-ethanolamine

diacyl-GPCh:

1,2-diacyl-sn-glycero-3-phosphorylcholine

diacyl-GPMMAE:

1,2-sn-glycero-3-phosphorylmonomethylethanolamine

diacyl-GPDMAE:

1,2-diacyl-sn-glycero-3-phosphoryldimethylethanolamine

PEa-cytidyltransferase, CTP:

ethanolaminephosphate cytidyltransferase/EC 2.7.7.14/

PCh-cytidyltransferase, CTP:

cholinephosphate cytidyltransferase/EC 2.7.7.15/

PEa-transferase, CDP-ethanolamine:

1,2-diglyceride ethanolaminephosphotransferase/EC 2.7.8.1/

PCh-transferase, CDP-choline:

1,2-diglyceride cholinephosphotransferase/EC 2.7.8.1/

SAM:

S-adenosylmethionine

References

  1. G. B. Ansell and T. Chojnacki, Biochem. J., 98, 303 (1966).

    Google Scholar 

  2. G. B. Ansell and R. F. Metcalfe, J. Neurochem., 18, 647 (1971).

    Google Scholar 

  3. L. F. Borkenhagen, and E. P. Kennedy, J. Biol. Chem., 227, 951 (1957).

    Google Scholar 

  4. J. Bremer, P. H. Figard and D. M. Greenberg, Biochim. Biophys. Acta, 43, 477 (1960).

    Google Scholar 

  5. K. K. Carrol, Nature, 191, 377 (1961).

    Google Scholar 

  6. T. Chojnacki and G. B. Ansell, J. Neurochem., 14, 413 (1967).

    Google Scholar 

  7. T. Chojnacki and T. Korzybski, Acta. Biochim. Polon., 11, 341 (1964).

    Google Scholar 

  8. T. Chojnacki and Z. Matysiak, Anal. Biochem., 44, 297 (1971).

    Google Scholar 

  9. T. Chojnacki and R. F. Metcalfe, Nature, 210, 947 (1966).

    Google Scholar 

  10. T. Chojnacki, A. Radomińska-Pyrek and T. Korzybski, Acta. Biochim. Polon., 14, 383 (1967).

    Google Scholar 

  11. J. Folch, M. Lees and G. H. Sloane-Stanley, J. Biol. Chem., 226, 497 (1957).

    Google Scholar 

  12. T. C. Hall and E. C. Cocking, Biochem. J., 96, 626 (1965).

    Google Scholar 

  13. R. T. Haviland and L. L. Bieber, Anal. Biochem., 33, 333 (1970).

    Google Scholar 

  14. A. M. Horowitz and G. W. Beadle, J. Biol. Chem., 150, 325 (1943).

    Google Scholar 

  15. E. P. Kennedy, J. Biol. Chem., 222, 185 (1956).

    Google Scholar 

  16. E. P. Kennedy and S. B. Weiss, J. Biol. Chem., 222, 193 (1956).

    Google Scholar 

  17. K. D. Munkres, M. N. Munkres, P. Green, S. Hedman, B. J. Andrews, G. Holland and D. C. Woodward, Neurospora Newsl., 9, 14 (1968).

    Google Scholar 

  18. G. Porcellati, M. G. Biasion and M. Pirotta, Lipids, 5, 734 (1970).

    Google Scholar 

  19. G. Porcellati and M. G. Pirotta, Enzymologia, 38, 351 (1969).

    Google Scholar 

  20. A. Radomińska-Pyrek, A. Kruszewska and Z. Matysiak, T. Chojnacki, Neurospora Newst., 18, 3 (1971).

    Google Scholar 

  21. A. Radomińska-Pyrek, Z. Matysiak and T. Chojnacki, Acta Biochim. Polon., 16, 357 (1969).

    Google Scholar 

  22. O. Renkonen, Biochim. Biophys. Acta, 125, 288 (1966).

    Google Scholar 

  23. F. Schlenk and R. E. De Palma, J. Biol. Chem., 229, 1037 (1957).

    Google Scholar 

  24. W. C. Schneider, J. Biol. Chem., 238, 3572 (1963).

    Google Scholar 

  25. S. Sherr and C. Byk, Biochim. Biophys. Acta, 239, 243 (1971).

    Google Scholar 

  26. C. J. Waechter and R. L. Lester, J. Bacteriol., 105, 837 (1971).

    Google Scholar 

  27. G. F. Wilgram and E. P. Kennedy, J. Biol. Chem. 238, 2615 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated with respect and affection to Prof. Dr JózefHeller, the discoverer of insect inorganic pyrophosphates that led to our studies on the biosynthesis of phospholipids.

An invited article.

CDPCh, CDPMMAE, CDPMMAE and CDPEa are the CMP derivatives of the respective aminoethanol phosphates.

PMMAE-cytidyltransferase and PDMAE-cytidyltransferase are enzymic activities of the same type as the two former but assayed with PMMAE and PDMAE respectively.

PMMAE-transferase and PDMAE-transferase are enzymic activities of the same type as the two former but assayed with CDPMMAE and CDPDMAE respectively.

PMMAE-transferase and PDMAE-transferase are enzymic activities of the same type as the two former but assayed with CDPMMAE and CDPDMAE respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matysiak, Z., Radomińska-Pyrek, A. & Chojnacki, T. The cytidine mechanism and methylation pathway in the formation of N-methylated ethanolamine phosphoglycerides in Neurospora crassa. Mol Cell Biochem 3, 143–151 (1974). https://doi.org/10.1007/BF01659186

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01659186

Keywords

Navigation