Skip to main content
Log in

Origins of biological information and the genetic code

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Amino acids have been shown to be thermally condensable to informational proteinoids, as expressed in a variety of enzymic functions. Such proteinoids easily yield vast numbers of minimal cells having many properties of contemporary cells including reproduction, which requires, however, growth by accretion. Experiments have demonstrated how internucleotide bonds are synthesized by such minimal cells, and how appropriate complexes of proteinoids with polynucleotides synthesize peptides.

Since the necessary conditions for these processes occur geologically, a theory of the origin of a reproductive protocell and partial further evolution thereof has resulted. The origin and early evolution of information has been traced in this paper as a consequence of the capacity for selective interactions by the macromolecules and systems produced in the primordial sequence. While this picture, like any evolutionary picture, can be extended by further studies, it is an unbroken continuality (see reference 72) for the sequence of processes covered. The expression of biological information has come to be visualized as a complex interplay of enzymic catalysis, stabilization in cells and organelles, and coding between two types of macromolecule. The new view is that only limited kinds of informational mechanisms could have emerged from their precursor mechanisms. The task for the scientist studying the origin of information is one partly of identifying the essential sequence.

The experiments indicate that prior to organismsmolecular selection charted the path of informational evolution. With the advent of reproducing organisms,Darwinian selection entered the evolutionary stream, but molecular selection continued to operate also. At some stage, molecular selection rooted in amino acid interaction became coded in purine, pyrimidine-amino acid interaction within polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lengyel and D. Söll, Bact. Revs. 33, 264–301 (1969).

    Google Scholar 

  2. F. Lipmann, Science 164, 1024–1031 (1969).

    Google Scholar 

  3. S. W. Fox and K. Dose, “Molecular Evolution and the Origin of Life”, W. H. Freeman and Co., San Francisco, 1972.

    Google Scholar 

  4. K. Dose and H. Rauchfuss, in “Molecular Evolution: Prebiological and Biological” (D. L. Rohlfing and A. I. Oparin, eds.) pp. 199–217, Plenum Press, New York, 1972.

    Google Scholar 

  5. K. Dose, Theory Expt. Exobiol. 1, 41–71 (1971).

    Google Scholar 

  6. T. Oshima, Viva Origino 1, 35–43 (1971).

    Google Scholar 

  7. D. L. Rohlfing and S. W. Fox, Advances Catal. 20, 373–418 (1969).

    Google Scholar 

  8. S. W. Fox, Pure Appl. Chem. 34, 641–669 (1973).

    Google Scholar 

  9. S. W. Fox, J. R. Jungck and T. Nakashima, Origins Life 1, in press (1974).

  10. T. Nakashima and S. W. Fox, Proc. Nat. Acad. Sci. 69, 106–108 (1972).

    Google Scholar 

  11. J. C. Lacey Jr. and S. W. Fox, Theory Expt. Exobiol. 2, 33–63 (1972).

    Google Scholar 

  12. M. Eigen and L. de Maeyer, Naturwissenschaften 53, 50–57 (1966).

    Google Scholar 

  13. L. L. Gatlin, “Information Theory and the Living System”, Columbia University Press, New York, 1972.

    Google Scholar 

  14. A. Sakharov, J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 345–358 (1965).

    Google Scholar 

  15. J. Oró, Space Life Sc. 3, 507–550 (1972).

    Google Scholar 

  16. S. L. Miller, J. Am. Chem. Soc. 77, 2351–2361 (1955).

    Google Scholar 

  17. I. Prigogine, “Thermodynamics of Irreversible Processes”, 2nd edition, p.v., Charles C Thomas, Springfield, IL, 1955.

    Google Scholar 

  18. S. W. Fox and C. R. Windsor, Science 170, 984–986 (1970).

    Google Scholar 

  19. S. W. Fox, K. Harada and P. E. Hare, Proc. Fourth Lunar Sc. Conf. 2, 2241–2248 (1973).

    Google Scholar 

  20. J. R. Cronin and C. B. Moore, Science 172, 1327–1329 (1971).

    Google Scholar 

  21. S. W. Fox, C.-T. Wang, T. V. Waehneldt, T. Nakashima, G. Krampitz, T. Hayakawa and K. Harada, in “Peptides: Chemistry and Biochemistry” (B. Weinstein and S. Lande, eds.) pp. 499–527, Marcel Dekker, Inc., New York, 1970.

    Google Scholar 

  22. F. W. Billmeyer, Jr., “Textbook of Polymer Science”, pp. 310–337, Interscience Publishers, New York, 1962.

    Google Scholar 

  23. P. J. Flory, “Polymer Chemistry”, pp. 178–203, Univ. Press, Ithaca, 1953.

    Google Scholar 

  24. S. W. Fox, Advances Protein Chem. 2, 155–177 (1945).

    Google Scholar 

  25. S. W. Fox, Chem. Eng. News 49 (50), 46–53 (1971).

    Google Scholar 

  26. M. A. Saunders and D. L. Rohlfing, Science 176, 172–173 (1972).

    Google Scholar 

  27. M. Dixon and E. C. Webb, “Enzymes”, p. 666, Academic Press, New York, 1958.

    Google Scholar 

  28. M. Eigen, Naturwissenschaften 58, 465–523 (1971).

    Google Scholar 

  29. A. I. Oparin, “The Origin of Life on Earth”, p. 286, Academic Press, New York, 1957.

    Google Scholar 

  30. F. Lipmann, in “Molecular Evolution: Prebiological and Biological” (D. L. Rohlfing and A. I. Oparin, eds.) pp. 261–269, Plenum Press, New York, 1972.

    Google Scholar 

  31. D. L. Rohlfing and S. W. Fox, Arch. Biochem. Biophys. 118, 127–132 (1967).

    Google Scholar 

  32. S. W. Fox, E Wiggert and D. Joseph, in “The Origins of Prebiological Systems and of their Molecular Matrices” (S. W. Fox, ed.) pp. 368–371, Academic Press, New York, 1965.

    Google Scholar 

  33. T. Oshima, Arch. Biochem. Biophys. 126, 478–485 (1968).

    Google Scholar 

  34. H. G. Hardebeck, G. Krampitz and L. Wulf, Arch. Biochem. Biophys. 123, 72–81 (1968).

    Google Scholar 

  35. D. L. Rohlfing, Arch. Biochem. Biophys. 118, 468–474 (1967).

    Google Scholar 

  36. G. Krampitz, S. Baars-Diehl, W. Haas and T. Nakashima, Experientia 24, 140–142 (1968).

    Google Scholar 

  37. G. Krampitz, W. Haas and S. Baars-Diehl, Naturwissenschaften 55, 345–346 (1968).

    Google Scholar 

  38. K. Dose and L. Zaki, Z. Naturforsch. 26b, 144–148 (1971).

    Google Scholar 

  39. S. W. Fox and C.-T. Wang, Science 160, 547–548 (1968).

    Google Scholar 

  40. S. W. Fox, K. Harada and D. L. Rohlfing, in “Polyamino Acids, Polypeptides, and Proteins” (M. Stahmann, ed.) pp. 47–53, U. Wisc. Press, Madison, 1962.

    Google Scholar 

  41. D. L. Rohlfing and S. W. Fox, Arch. Biochem. Biophys. 118, 122–126 (1967).

    Google Scholar 

  42. J. Noguchi and T. Saito, in “Polyamino Acids, Polypeptides, and Proteins” (M. Stahmann, ed.) pp. 313–327, U. Wisc. Press, Madison, 1962.

    Google Scholar 

  43. V. R. Usdin, M. A. Mitz and P. J. Killos, Arch. Biochem. Biophys. 122, 258–261 (1967).

    Google Scholar 

  44. S. W. Fox and G. Krampitz, Nature 203, 1362–1364 (1964).

    Google Scholar 

  45. A. Wood and H. G. Hardebeck, in “Molecular Evolution: Prebiological and Biological” (D. L. Rohlfing and A. I. Oparin, eds.) pp. 233–245, Plenum Press, New York, 1972.

    Google Scholar 

  46. J. T. Bagnara and M. E. Hadley, Experientia 26, 167–169 (1970).

    Google Scholar 

  47. E. Zuckerkandl and L. Pauling, in “Evolving Genes and Proteins” (V. Bryson and H. J. Vogel, eds.) pp. 97–166, Academic Press, New York, 1965.

    Google Scholar 

  48. G. Krampitz and S. W. Fox, Proc. Nat. Acad. Sci. U.S. 62, 399–406 (1969).

    Google Scholar 

  49. Stephen-Sherwood and J. Oró, Space Life Sci. 4, 5–31 (1973).

    Google Scholar 

  50. R. S. Young, in “The Origins of Prebiological Systems and of their Molecular Matrices” (S. W. Fox, ed.) pp. 347–356, Academic Press, New York, 1965.

    Google Scholar 

  51. S. W. Fox, R. J. McCauley and A. Wood, Comp. Biochem. Physiol. 20, 773–778 (1967).

    Google Scholar 

  52. L. L. Hsu, S. Brooke and S. W. Fox, Currents Mod. Biol. 4, 12–25 (1971).

    Google Scholar 

  53. L. L. Hsu, unpublished experiments.

  54. M. Taube, S. Z. Zdrojewski, K. Samochocka and K. Jezierska, Angew. Chem. 79, 239 (1967).

    Google Scholar 

  55. K. Harada and S. W. Fox, Nature 201, 335–336 (1964).

    Google Scholar 

  56. J. G. Lawless and C. D. Boynton, Nature 243, 405–407 (1973).

    Google Scholar 

  57. T. V. Waehneldt and S. W. Fox, Biochim. Biophys. Acta 160, 239–245 (1968).

    Google Scholar 

  58. A. Yuki and S. W. Fox, Biochem. Biophys. Res. Commun. 36, 657–663 (1969).

    Google Scholar 

  59. S. W. Fox, A. Yuki, T. V. Waehneldt and J. C. Lacey, Jr., in “Chemical Evolution and the Origin of Life” (R. Buvet and C. Ponnamperuma, eds.) pp. 252–262, North-Holland Publishing Co., Amsterdam, 1971.

    Google Scholar 

  60. S. W. Fox, J. C. Lacey, Jr. and T. Nakashima, in “Nucleic Acid-Protein Interactions” (D. W. Ribbons and J. F. Woessner, eds.) pp. 113–127, North-Holland Publishing Co., Amsterdam, 1971.

    Google Scholar 

  61. A. Weber and S. W. Fox, Biochim. Biophys. Acta 319, 174–187 (1973).

    Google Scholar 

  62. W. E. White, Jr., J. C. Lacey, Jr. and A. L. Weber, Biochem. Biophys. Res. Commun. 51, 283–291 (1973).

    Google Scholar 

  63. H. Borsook and H. M. Huffman, in “Chemistry of the Amino Acids and Proteins” (C. L. A. Schmidt, ed.), pp. 822–870 Charles C Thomas, Springfield, IL, 1944.

    Google Scholar 

  64. J. D. Bernal, “The Physical Basis of Life”, pp. 35–37, Routledge and Kagan Paul, London, 1951.

    Google Scholar 

  65. W. Groth and H. Suess, Naturwissenschaften 26, 77 (1938).

    Google Scholar 

  66. S. W. Fox, Naturwissenschaften 60, 359–368 (1973).

    Google Scholar 

  67. A. L. Lehninger, “Biochemistry”, p. 782, Worth Publishers, Inc., New York, 1970.

    Google Scholar 

  68. C. B. Van Niel, in “The Microbe's Contribution to Biology”, p. 165, Harvard University Press, Cambridge, 1956.

    Google Scholar 

  69. G. Ehrensvard, “Life: Origin and Development”, pp. 138–146, University of Chicago Press, 1962.

  70. R. K. Ralph, Biochem. Biophys. Res. Commun. 33, 213–218 (1968).

    Google Scholar 

  71. F. H. C. Crick, J. Mol. Biol. 38, 367–379 (1968).

    Google Scholar 

  72. T. O. Fox, in “Molecular Evolution: Prebiological and Biological” (D. L. Rohlfing and A. I. Oparin, eds.) pp. 35–42, Plenum Press, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Manuscript and personal perspective solicited.

An invited article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, S.W. Origins of biological information and the genetic code. Mol Cell Biochem 3, 129–142 (1974). https://doi.org/10.1007/BF01659185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01659185

Keywords

Navigation