Skip to main content

Advertisement

Log in

Experimental results and future prospects for a nonpulsatile cardiac prosthesis

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Replacing the heart function by means of a nonpulsatile blood pump is a great challenge to nature, which evolved pulsatile blood circulation. Some years ago, we hypothesized that mammalian physiology was capable of adapting to chronic nonpulsatile blood flow and maintaining normal organ function. The methodology of complete circulatory replacement with nonpulsatile flow has been established in awake calf experiments in our institution. To date, 5 animals have lived with nonpulsatile blood perfusion with near normal physiology for up to 3 months. Our studies on nonpulsatile biventricular animals have shown that immediately following surgery there is an adaptation phase which lasts approximately 7 to 10 days. This phase is characterized by increased total systemic vascular resistance (SVR), which appears to correlate with an increase in the circulating catecholamines. After this phase, these animals showed normal values of SVR, renal, biochemical, and endocrine function. Our data show that nonpulsatile blood flow is not a limiting factor to maintain mammalian life.

Résumé

Remplacer la fonction cardiaque par une pompe à débit continu est un défi à la nature, la circulation normale étant de type pulsatif. Il y a quelques années déjà nous avons émis l'hypothèse que les mammifères étaient capables de s'adapter à une circulation à débit continu sans alterations physiologiques. Dans notre institution, nous avons expérimentalement mis au point chez le veau un appareillage assurant sous débit continu le remplacement de la circulation sanguine. A ce jour cinq veaux soumis à cette expérimentation ont vécu plus de trois mois. Nos études nous ont montré que l'implantation de cet appareillage était suivie d'une phase d'adaptation d'une durée de 7–10 jours. Cette phase est caractérisée par une élévation de la résistance vasculaire systémique qui paraît être en corrélation avec une augmentation des catécholamines circulantes. Après cette phase la résistance vasculaire systémique est normale comme sont normales les fonctions rénales biochimiques et endocriniennes. Notre expérience montre qu'un appareil assurant la circulation sanguine sous un débit continu représente pas un facteur qui limite le maintien de la vie chez les mammifères.

Resumen

El reemplazo de la función cardiaca por medio de una bomba sanguínea no pulsátil representa un verdadero desafío para la naturaleza, la cual ha desarrollado, a través de la evolución biológica, el sistema de circulación sanguíneo pulsátil. Hace algunos años elaboramos la hipótesis de que la fisiología mamífera era capaz de adaptarse a un flujo sanguíneo crónico no pulsátil y mantener una función orgánica normal. La metodología del reemplazo circulatorio por medio del flujo no pulsátil ha sido establecida en experimentos con terneros no anestesiados en nuestra institución. Hasta la fecha, cinco animales han vivido con perfusión sanguínea no pulsátil y fisiología casi normal hasta por tres meses. Nuestros estudios en animales biventriculares no pulsátiles han demostrado que inmediatamente después de la cirugía se produce una fase de adaptación que dura aproximadamente 7 a 10 días. Esta fase se caracteriza por un aumento en la resistencia vascular sistémica total (RVS), la cual parece estar correlacionada con un aumento en las catecolaminas circulantes. A continuation de esta fase los animales exhiben valores normales de RVS y función renal, bioquímica y endocrina normales. Nuestros hallazgos muestran que el flujo sanguíneo no pulsátil no es un factor limitante para el mantenimiento de la vida mamífera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golding, L.R., Jacobs, G., Murakami, T., Takatani, S., Valdés, F., Harasaki, H., Nosé, Y.: Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Trans. Am. Soc. Artif. Intern. Organs26:251, 1980

    Google Scholar 

  2. Valdés, F., Takatani, S., Jacobs, G.B., Murakami, T., Harasaki, H., Golding, L.R., Nosé, Y.: Comparison of hemodynamic changes in a chronic nonpulsatile biventricular bypass (BVB) and total artificial heart (TAH). Trans. Am. Soc. Artif. Intern. Organs26:455, 1980

    Google Scholar 

  3. Kitagawa, M., Harasaki, H., Kambic, H., Golding, L., Ozawa, K., Suwa, S., Jacobs, G., Nosé, Y.: Morphological alteration of natural heart with various types of long-term assist pumps. Trans. Am. Soc. Artif. Intern. Organs26:314, 1980

    Google Scholar 

  4. Takatani, S., Ozawa, K., Golding, L., Jacobs, G., Murakami, T., Valdés, F., Harasaki, H., Kiraly, R., Nosé, Y.: Comparative evaluation of nonpulsatile and pulsatile cardiac prostheses. Trans. Am. Soc. Artif. Intern. Organs26:438, 1980

    Google Scholar 

  5. Valdés, F., Golding, L.R., Harasaki, H., Takatani, S., Jacobs, G., Nosé, Y.: Hemodynamic response to exercise during chronic ventricular fibrillation and nonpulsatile biventricular bypass (BVB). Trans. Am. Soc. Artif. Intern. Organs27:449, 1981

    Google Scholar 

  6. Golding, L.R., Murakami, G., Harasaki, H., Takatani, S., Jacobs, G., Yada, I., Tomita, K., Yozu, R., Valdés, F., Fujimoto, L. K., Koike, S., Nosé, Y.: Chronic nonpulsatile blood flow. Trans. Am. Soc. Artif. Intern. Organs28:81, 1982

    Google Scholar 

  7. Takatani, S., Golding, L.R., Harasaki, H., et al.: Nonpulsatile biventricular bypass during ventricular fibrillation. Jpn. J. Artif. Organs12:254, 1983

    Google Scholar 

  8. Yada, I., Golding, L.R., Harasaki, H., et al.: Physiopathological studies of nonpulsatile blood flow in chronic models. Trans. Am. Soc. Artif. Intern. Organs29:520, 1983

    Google Scholar 

  9. Bernstein, E.F.: A centrifugal pump for circulatory assistance. In Assisted Circulation, F. Unger, editor. Berlin-Heidelberg-New York, Springer-Verlag, 1979, pp. 231–242

    Google Scholar 

  10. Johnston, G.G., Hammill, F.S., Johannsen, K.F., et al.: Prolonged pulsatile and nonpulsatile LV bypass with a centrifugal pump. Trans. Am. Soc. Artif. Intern. Organs22:323, 1976

    Google Scholar 

  11. Johnston, G.G., Hammill, F., Marzec, U., Gerard, D., Johansen, K., Dilley, R.B., Bernstein, E.F.: Prolonged pulseless perfusion in unanesthetized calves. Arch. Surg.111:1225, 1976

    Google Scholar 

  12. Bernstein, E.F., Cosentino, L.C., Reich, S., et al.: A compact, low hemoloysis non-thrombogenic system for non-thoracotomy prolonged left ventricular bypass. Trans. Am. Soc. Artif. Intern. Organs20:643, 1974

    Google Scholar 

  13. Bernstein, E.F., DeLaria, G.A., Johansen, K.H., Shuman, R.L., Stasz, P., Reich, S.: Twenty-four hours left ventricular bypass with a centrifugal blood pump. Ann. Surg.181:412, 1975

    Google Scholar 

  14. Fontan, F., Bandet, E.: Surgical repair of tricuspid atresia. Thorax36:240, 1971

    Google Scholar 

  15. Hickey, P.R., Buckley, M.J., Philbin, D.M.: Pulsatile and nonpulsatile cardiopulmonary bypass: Review of a counterproductive controversy. Ann. Thorac. Surg.36:720, 1983

    Google Scholar 

  16. Mavroudis, C.: To pulse or not to pulse. Ann. Thorac. Surg.25:259, 1978

    Google Scholar 

  17. Wesolowski, S.A., Sauvage, L.R., Pinc, R.D.: Extracorporeal circulation: The role of the pulse in maintenance of the systemic circulation during heart-lung bypass. Surgery37:663, 1955

    Google Scholar 

  18. Wesolowski, S.A., Fisher, J.H., Welch, C.S.: Perfusion of pulmonary circulation by non-pulsatile flow. Surgery33:370, 1953

    Google Scholar 

  19. Nakayama, K., Tamiya, T., Yamamoto, K., et al.: High amplitude pulsatile pump in extracorporeal circulation with particular reference to hemodynamics. Surgery54:798, 1963

    Google Scholar 

  20. Giron, F., Birtwell, W.C., Soroff, H.S., Deterling, R.A.: Hemodynamic effects of pulsatile and nonpulsatile flow. Arch. Surg.93:802, 1966

    Google Scholar 

  21. Trinkle, J.K., Helton, N.E., Wood, R.E., Bryant, L.R.: Metabolic comparison of a new pulsatile pump and a roller pump for cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg.58:562, 1969

    Google Scholar 

  22. Jacobs, L.A., Klopp, E.H., Seamone, W., Topaz, S.R.: Improved organ function during cardiac bypass with a roller pump to deliver pulsatile flow. J. Thorac. Cardiovasc. Surg.58:703, 1969

    Google Scholar 

  23. Dunn, J., Kirsh, M.M., Harness, J., Carroll, M., Straker, J., Sloan, H.: Hemodynamic, metabolic, and hematologic effects of pulsatile cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg.68:138, 1974

    Google Scholar 

  24. Shoor, P.M., Hammill, F.S., Griffith, L.D., Dilley, R.B., Bernstein, E.F.: Hemodynamic response to exercise in the unanesthetized calf with pulseless arterial flow. Trans. Am. Soc. Artif. Intern. Organs26:1, 1980

    Google Scholar 

  25. Yozu, R., Jacobs, G., Golding, L., et al.: Analysis of key factors affecting the left-right flow differential (LRFD) observed in total artificial heart (TAH) and nonpulsatile biventricular bypass (NPBB) calves. Abstr. Am. Soc. Artif. Intern. Organs13:15, 1984

    Google Scholar 

  26. Sugita, Y., Golding, L., Jacobs, G., et al.: Comparison of osmotic and body fluid balance in chronic nonpulsatile biventricular bypass (NPBVB) and total artificial heart (TAH) experiments. Trans. Am. Soc. Artif. Intern. Organs (in press)

  27. Cowan, G.S.M., Padula, R.T., Magee, J.H., Camishion, R.C.: Effects of pulsatile and nonpulsatile blood flow on renal function. Surg. Forum.19:389, 1968

    Google Scholar 

  28. Many, M., Soroff, H.S., Birtwell, W.C., Giron, F., Wise, H., Deterling, R.A., Jr.: The physiologic role of pulsatile and non-pulsatile blood flow. Arch. Surg.95:762, 1967

    Google Scholar 

  29. German, J.C., Chalmers, G.S., Hirai, J., Mukherjee, N.D., Wakabayashi, A., Connolly, N.E.: Comparison of nonpulsatile and pulsatile extracorporeal circulation on renal tissue perfusion. Chest61:65, 1972

    Google Scholar 

  30. Belzer, F.O., Ashby, B.S., Huang, J.S., Dunphy, J.E.: Etiology of rising perfusion pressure and isolated organ perfusion. Ann. Surg.168:382, 1968

    Google Scholar 

  31. Boucher, J.K., Rudy, L.W., Edmunds, L.H., Jr.: Organ blood flow during pulsatile cardiopulmonary bypass. J. Appl. Physiol.36:86, 1974

    Google Scholar 

  32. Starling, E.H.: On the absorption of fluids from the connective tissue spaces. J. Physiol.19:312, 1896

    Google Scholar 

  33. Shepard, R.B., Kirklin, J.B.: Relation of pulsatile flow to oxygen consumption and other variables during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg.58:694, 1969

    Google Scholar 

  34. Philbin, D.M., Levine, F.H., Kono, K., Coggins, C.H., Moss, J., Slater, E.E., Buckley, M.J.: Attenuation of the stress response to cardiopulmonary bypass by the addition of pulsatile flow. Circulation64:808, 1981

    Google Scholar 

  35. Landymore, R.W., Murphy, D.A., Kinley, C.E., Parrott, J.C., Moffitt, E.A., Longley, W.J., Qirbi, A.A.: Does pulsatile flow influence the incidence of postoperative hypertension? Ann. Thorac. Surg.28:261, 1979

    Google Scholar 

  36. Kono, K., Philbin, D.M., Coggins, C.H., Slater, E.E., Triantafillou, A., Levine, F.H., Buckley, M.J.: Adrenocortical hormone levels during cardiopulmonary bypass with and without pulsatile flow. J. Thorac. Cardiovasc. Surg.85:129, 1983

    Google Scholar 

  37. Taylor, K.M., Jones, J.V., Walker, M.S., Rao, S., Bain, W.H.: The cortisol response during heart-lung bypass. Circulation54:20, 1976

    Google Scholar 

  38. Mandelbaum, I., Burns, W.H.: Pulsatile and nonpulsatile flow. J.A.M.A.191:657, 1965

    Google Scholar 

  39. Hauge, A., Nicolaysen, G.: Pulmonary O2 transfer during pulsatile and nonpulsatile perfusion. Acta Physiol. Scand.109:325, 1980

    Google Scholar 

  40. Snow, J., Harasaki, H., Kasick, J., Whalen, R., Kiraly, R., Nosé, Y.: Promising results with a new textured surface intrathoracic variable volume device for LVAS. Trans. Am. Soc. Artif. Intern. Organs27:485, 1981

    Google Scholar 

  41. Ozawa, K., Snow, J., Sukalac, R., Takatani, S., Kitagawa, M., Valdés, F., Harsaki, H., Hillegass, D., Castle, C., Jacobs, G., Kiraly, R., Nosé, Y.: Totally implantable left ventricular assist device for human application. Trans. Am. Soc. Artif. Intern. Organs26:461, 1980

    Google Scholar 

  42. Snow, J., Ozawa, K., Sukalac, R., Kiraly, R., Nosé, Y.: Initial results with three different electrially driven left ventricular assist systems (LVAS). Trans. Am. Soc. Artif. Intern. Organs27:582, 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH grants nos. HL 26267 and HL 24286, and by The Cleveland Clinic Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yozu, R., Golding, L.A.R., Jacobs, G. et al. Experimental results and future prospects for a nonpulsatile cardiac prosthesis. World J. Surg. 9, 116–127 (1985). https://doi.org/10.1007/BF01656262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01656262

Keywords

Navigation