Skip to main content
Log in

Protein-sparing therapy in the postoperative period

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Surgical trauma leads to increased nitrogen loss which may result from increased protein breakdown, diminished protein synthesis, or both. Increased protein breakdown is predominant after surgical trauma, whereas protein synthesis has been reported to be either unchanged or increased. Attempts to improve nitrogen balance should be directed toward both mechanisms; protein breakdown is diminished by avoiding tissue damage, and by prevention of sepsis which results in release of catabolic peptides, e.g., of interleukin 1. Protein breakdown may also be diminished by avoidance of stress hormones, particularly of cortisol, and by providing energy substrates, i.e., glucose, long- or medium-chain fatty acids. Protein synthesis is enhanced by providing nutrition, including supply of energy and amino acids. Data obtained in human volunteers demonstrated that transient elevation of plasma cortisol to stress levels resulted in sustained elevation of plasma amino acids, indicating increased proteolysis. Four hours after plasma cortisol elevation, glucose “clamp” studies indicated insulin resistance of peripheral and hepatic glucose metabolism. In contrast, insulin action on plasma amino acids was unimpaired suggesting that hyperinsulinemia was capable of reverting the cortisol-induced protein breakdown. The effect of postoperative amino acid therapy was studied in 60 patients after major surgery who received either amino acids or carbohydrates, or both by peripheral venous administration. Postoperative nitrogen balance during 6 days was not significantly improved when amino acids were administered in spite of different plasma concentrations of glucose, insulin, and ketone bodies during the various nutrition regimens. Thus, measures to diminish protein breakdown and to increase protein synthesis should be integrated into the management of the postoperative patient, in order to diminish nitrogen loss and thus to decrease postoperative morbidity.

Résumé

Le traumatisme chirurgical aboutit à une perte azotée qui peut être le fait de la désintégration des protéines, de la diminution de la synthèse protéique ou des deux mécanismes. La désintégration protéique est constante alors que la synthèse protéique parfois reste normale ou augmente. Les mesures pour améliorer l'équilibre azoté doivent prendre en compte les deux mécanismes. La protéolyse est diminuée 1) en évitant les altérations tissulaires et en prévenant l'infection qui détermine la libération de peptides cataboliques; 2) en évitant la formation des hormones de stress, en particulier le Cortisol; 3) en apportant des éléments énergétiques comme le glucose, les acides gras à chaîne moyenne ou longue. La synthèse protéique est renforcée par l'apport d'agents nutritifs comprenant des éléments énergétiques et des amino-acides. Les données recueillies chez des volontaires ont permis de démontrer que l'élévation passagère du cortisol plasmatique sous l'effet du stress resultait d'une élévation des amino-acides plasmatiques témoignant d'une augmentation de la protéolyse. Quatre heures après ce phénomène les dosages du glucose témoignent d'une résistance à l'insuline du métabolisme du glucose hépatique et périphérique. En revanche l'action de l'insuline sur les amino-acides plasmatiques n'est pas altérée ce qui suggère que l'hyperinsulinémie est capable de contrôler la protéolyse provoquée par le Cortisol. Les effets du traitement postopératoire par des amino-acides ont été étudiés chez 60 sujets qui ont subi une intervention chirurgicale majeure et qui ont été soumis à une perfusion veineuse soit d'amino-acides, soit d'hydrates de carbone, soit des deux nutriments. L'équilibre azoté au cours des 6 jours suivant l'intervention ne fut pas nettement amélioré lorsque les amino-acides furent employés quelles qu'aient été les différentes concentrations plasmatiques du glucose, de l'insuline et des corps cétoniques en fonction des différents régimes nutritionnels. Par conséquent toutes les actions possibles pour diminuer la protéolyse et accroître la synthèse protéique doivent être employées en postopératoire de manière à diminuer la perte azotée et à diminuer la morbidité.

Resumen

El trauma quirúrgico da lugar a un aumento en las pérdidas de nitrógeno, fenómeno que puede ser el resultado de un incremento en la degradación proteica, de una disminución en la síntesis proteica, o de ambos factores combinados. El aumento en la degradación proteica es un fenómeno predominante después del trauma quirúrgico, en tanto que la síntesis proteica, según ha sido publicado, puede permanecer sin alteración o aparecer aumentada. Los esfuerzos destinados a mejorar el balance de nitrógeno deben estar dirigidos hacia la intervención sobre ambos mecanismos; la degradación proteica puede ser disminuída evitando daño tisular y mediante la prevención de la sepsis, la cual puede resultar en la liberación de péptidos catabólicos, por ejemplo la interleucina 1. La degradación proteica también puede ser disminuída evitando las hormonas del estrés, particularmente el cortisol, y mediante la provisión de sustratos energéticos, como lo son la glucosa o los ácidos grasos de cadenas largas o medias. Se puede estimular la síntesis proteica mediante la provisión de nutrientes, incluyendo sustratos energéticos y aminoacidos. La información obtenida en voluntarios humanos demuestra que la elevación transitoria en el cortisol plasmático para llegar a los niveles de estrés resulta en una elevación sostenida de los aminoácidos, lo cual indica proteolisis. Por varias horas después de que aparece la elevación plasmática de cortisol, estudios de “clamp” de glucosa indican la presencia de resistencia a la insulina por parte del metabolismo periférico y hepático de la glucosa. Por el contrario, la acción insulínica sobre los aminoácidos del plasma aparece sin alteraciones, lo cual sugiere que la hiperinsulinemia es capaz de revertir la degradación proteica inducida por el cortisol. El efecto de la terapia postoperatoria con aminoácidos fué estudiado en 60 pacientes sometidos a cirugía mayor, los cuales recibieron amionácidos o carbohidratos, o ambos nutrientes, por vía venosa periférica. El balance postoperatorio de nitrógeno en el curso de los primeros seis días no apareció significativamente incrementado cuando los aminoácidos fueron administrados, a pesar de concentraciones diversas de glucosa, insulina y cuerpos cetónicos, en el curso de los diversos régimenes nutricionales. Por ello, las medidas que se emprendan para disminuír la degradación proteica y para aumentar la síntesis de proteína deben ser integradas dentro del manejo postoperatorio del paciente, con el objeto de disminuir la pérdida de nitrógeno y lograr así minimizar la morbilidad postoperatoria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein, T.P., Buzby, G.P.: Protein metabolism surgical patients. Surg. Clin. North Am.61:519, 1981

    Google Scholar 

  2. Birkhahn, R.H., Long, C.L., Fitkins, D., Geiger, J.W., Blakemore, W.C.: Effects of major skeletal trauma on whole body protein turnover in man measured by L-(1-13C)-leucine. Surgery88:294, 1980

    Google Scholar 

  3. O'Donnell, T.F., Clowes, G.H.A., Blackburn, G.L., Ryan, N.T., Benotti, P.N., Miller, J.D.B.: Proteolysis associated with a deficit of peripheral energy fuel substrates in septic man. Surgery80:192, 1976

    Google Scholar 

  4. Abbott, W.C., Schiller, W.R., Long, C.L., Birkhahn, R.H., Blakemore, W.S.: The effect of major thermal injury on plasma ketone body levels. J. Parent. Ent. Nutr.9:153, 1985

    Google Scholar 

  5. O'Keefe, S.J.D., Sender, P.M., James, W.P.T.: “Catabolic” loss of body nitrogen in response to surgery. Lancet2:1035, 1974

    Google Scholar 

  6. Matthews, D.E., Motil, K.J., Rohrbaugh, D.K., Burke, J.F., Young, V.R., Bier, M.D.: Measurement of leucine metabolism in man from a primed, continuous infusion of L-(1-13C)-leucine. Am. J. Physiol.238:473, 1980

    Google Scholar 

  7. Stein, T.P., Leskiw, M.J., Wallace, H.W.: Changes in protein synthesis after trauma. Importance of nutrition. Am. J. Physiol.233:E348, 1977

    Google Scholar 

  8. Smale, B.F., Hobbs, C.L., Mullen, J.L., Rosato, E.F.: Serum protein response to surgery and starvation. J. Parent. Ent. Nutr.6:395, 1982

    Google Scholar 

  9. Baracos, V., Rodemann, P., Dinarelle, C.A., Goldberg, A.L.: Stimulation of muscle protein degradation and prostaglandin E2 release by leucocytic pyrogen (interleukin-1). N. Engl. J. Med.308:553, 1983

    Google Scholar 

  10. Goldberg, A.L.: Factors affecting protein balance in skeletal muscle in normal and pathological states. In Amino Acids, Metabolism and Medical Applications, G.L. Blackburn et al., editors. Boston-Bristol-London, John Wright, PSG Inc., 1983, pp. 201–218

    Google Scholar 

  11. Buzby, G.P., Mullen, J.L., Stein, T.P., Miller, E.E., Hobbs, C.L., Rosato, E.S.: Host-tumor interaction and nutrient supply. Cancer45:2940, 1980

    Google Scholar 

  12. Gelfand, R.A., Matthews, D.E., Bier, D.M., Sherwin, R.S.: Role of counterregulatory hormones in the catabolic response to stress. J. Clin. Invest.74:2238, 1984

    Google Scholar 

  13. Simmons, P.S., Miles, J.M., Gerich, J.M., Haymond, M.W.: Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J. Clin. Invest.73:412, 1984

    Google Scholar 

  14. Miles, J.M., Nissen, S.L., Gerich, J.E., Haymond, M.W.: Effects of epinephrine infusion on leucine and alanine kinetics in humans. Am. J. Physiol.247:E166, 1984

    Google Scholar 

  15. DeFronzo, R.A., Tobin, J.D., Andres R.: Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.237:E214, 1979

    Google Scholar 

  16. Robert, J.J., Bier, D.M., Zhao, X.H., Matthews, D.E., Young, V.R.: Glucose and insulin effects on de novo amino acid-synthesis in young men: Studies with stable isotope labelled alanine, glycine, leucine, and lysine. Metabolism31:1210, 1982

    Google Scholar 

  17. Crowe, P.J., Dennison, A., Royle, G.T.: The effect of pre-operative glucose loading on postoperative nitrogen metabolism. Br. J. Surg.71:635, 1984

    Google Scholar 

  18. Fulks, R.M., Li, J.B., Goldberg, A.L.: Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem.250:290, 1975

    Google Scholar 

  19. Pozefsky, T., Felig, P., Tobin, J., Soeldner, J.S., Cahill, G.F., Jr.: Amino acid balance across the tissue of the forearm in post-absorptive man: Effects of insulin at two dose levels. J. Clin. Invest.48:2273, 1969

    Google Scholar 

  20. Hinton, P., Allison, S.P., Littlejohn, S., Lloyd, J.: Insulin and glucose to reduce catabolic response to injury in burned patients. Lancet1:767, 1971

    Google Scholar 

  21. Woolfson, A.M.J., Heatley, R.V., Allison, S.P.: Insulin to inhibit protein catabolism after injury. N. Engl. J. Med.300:14, 1979

    Google Scholar 

  22. Maksoud, J.G., Tannuri, U.: Effect of branchedchain amino acids and insulin on postinjury protein catabolism in growing animals. J. Parent. Ent. Nutr.8:416, 1984

    Google Scholar 

  23. Freeman, J.B., Stegink, L.D., Wittine, M.F., Danney, M.M., Thompson, R.G.: Lack of correlation between nitrogen balance and serum insulin levels during protein sparing with and without dextrose. Gastroenterology73:31, 1977

    Google Scholar 

  24. Georgieff, M., Lyle, L.M., Bistrian, B.R., Blackburn, G.L.: Xylitrol, an energy source for intravenous nutrition after trauma. J. Parent. Ent. Nutr.9:199, 1985

    Google Scholar 

  25. Tischler, M.E.: Metabolic response of muscle to trauma. In Branched Chain Amino and Keto Acids in Health and Disease. S.A. Adibi et al., editors. Basel, Karger Basel, 1984, pp. 361–383

    Google Scholar 

  26. Morgan, H.E., Jefferson, L.S., Wolpert, E.B., Rannels, D.E.: Regulation of protein synthesis on heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J. Biol. Chem.246:2163, 1971

    Google Scholar 

  27. Buse, M.G., Reid, S.S.: Leucine. A possible regulator of protein turnover in muscle. J. Clin. Invest.56:1250, 1975

    Google Scholar 

  28. Freund, H., Yoshimura, N., Fischer, J.E.: The effect of branched chain amino acids and hypertonic glucose infusions on postinjury catabolism in the rat. Surgery87:401, 1980

    Google Scholar 

  29. Gimmon, Z., Freund, H.R., Fischer, J.E.: The optimal branched-chain to total acid ratio in the injury-adapted amino acid formulation. J. Parent. Ent. Nutr.9:133, 1985

    Google Scholar 

  30. Cerra, F.B., Mazuski, J.E., Chute, E., Nuwer, N., Teasley, K., Lysne, J., Shronts, E.P., Konstantinides, F.N.: Branched chain metabolic support. A prospective, randomized, double-blind trial in surgical stress. Ann. Surg.199:286, 1984

    Google Scholar 

  31. Cerra, F.B., Upson, D., Angelico, R., Wiles, C. III, Lyons, J., Faulkenbach, L.A., Paysinger, J.: Branched chains support postoperative protein synthesis. Surgery92:192, 1982

    Google Scholar 

  32. Cerra, F.B., Mazuski, J., Teasley, K., Nuwer, N., Lysne, J., Shronts, E., Konstantinides, F.: Nitrogen retention in critically ill patients is proportional to the branched chain amino acid load. Crit. Care Med.11:775, 1983

    Google Scholar 

  33. Meguid, M.M., Landel, A., Lo, C.-C., Chang, C.-R., Debonis, D., Hill, R.: Branched chain amino acid solutions enhance nitrogen accretion in postoperative cancer patients. In Amino Acids, Metabolism and Medical Applications, G.L. Blackburn et al., editors. Boston-Bristol-London, John Wright, PSG Inc., 1983, pp. 421–427

    Google Scholar 

  34. Bower, R.H., Kern K.A., Fischer, J.E.: Use of a branched chain amino acid enriched solution in patients under metabolic stress. Am. J. Surg.149:266, 1985

    Google Scholar 

  35. Daly, J.M., Mihranian, M.H., Kehoe, J.E., Brennan, M.F.: Effects of postoperative infusion of branched chain amino acids on nitrogen balance and forearm muscle substrate flux. Surgery94:151, 1983

    Google Scholar 

  36. Roth, E., Funovics, J., Karner, J., Huk, I., Schulz, F., Fritsch, A.: No stimulation of nitrogen retention and plasma protein synthesis under an increased administration of branched chain amino acids. Infusionther. Klin. Ernährung.10:259, 1983

    Google Scholar 

  37. Freund, H., Yoshimura, N., Fischer, J.E.: Infusion of the branched chain amino acids in postoperative patients. Anticatabolic properties. Ann. Surg.190:18, 1979

    Google Scholar 

  38. Sapir, D.G., Stewart, P.M., Walser, M., Moreadith, C., Moyer, E.D., Imbembo, A.L., Rosenshein, N.B., Munoz, S.: Effects of A-ketoisocaproate and of leucine on nitrogen metabolism in postoperative patients. Lancet1:1010, 1983

    Google Scholar 

  39. Bistrian, B.R., Blackburn, G.L., Flatt, J.P., Sizer, J., Scrimshaw, N.S., Sherman, M.: Nitrogen metabolism and insulin requirement in obese diabetic adults on a protein-sparing modified fast. Diabetes25:494, 1976

    Google Scholar 

  40. Sherwin, R.S., Hendler, R.G., Felig, P.: Effect of ketone infusion on amino acid and nitrogen metabolism in man. J. Clin. Invest.55:1382, 1975

    Google Scholar 

  41. Fery, F., Balasse, E.O.: Differential effects of sodium acetoacetate and acetoacetic acid infusions on alanine and glutamine metabolism in man. J. Clin. Invest.66:232, 1980

    Google Scholar 

  42. Miles, J.M., Nissen, S.L., Rizza, R.A., Gerich, J.E., Haymond, M.W.: Failure of infused β-hydroxybutyrate to decrease proteolysis in man. Diabetes32:197, 1983

    Google Scholar 

  43. Maiz, A., Moldawer, L.L., Bistrian, B.R., Birkhahn, R.H., Long, C.L., Blackburn, L.: Monoacetoacetin and protein metabolism during parenteral nutrition in burned rats. Biochem J.226:43, 1985

    Google Scholar 

  44. McGarry, J.D., Wright, P.H., Foster, D.W.: Hormonal control of ketogenesis. Rapid activation of hepatic ketogenic capacity in fed rats by anti-insulin serum and glucagon. J. Clin. Invest55:1202, 1975

    Google Scholar 

  45. Oberhänsli, R., Schwendimann, R., Keller, U.: Effect of norepinephrine on fatty acid oxidation, ketogenesis and esterification in isolated rat hepatocytes. Diabetes34:774, 1985

    Google Scholar 

  46. Beaufrère, B., Tessari, P., Cattalini, M., Miles, J., Haymond, M.W.: Apparent decreased oxidation and turnover of leucine during infusion of medium chain triglycerides. Am. J. Physiol.249:E175, 1985

    Google Scholar 

  47. Stein, T.P., Presti, M.E., Leskiw, M.J., Torosian, M.E., Settle, R.G., Buzby, G.P., Schlutter, M.D.: Comparison of glucose, LCT, and LCT plus MCT as calorie sources in parenterally nourished rats. Am. J. Physiol.246:E277, 1984

    Google Scholar 

  48. Tessari, P., Nissen, S.L., Haymond, M.W.: Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo. J. Clin. Invest. (in press)

  49. Young, V.R., Yang, R.D., Meredith, C., Matthews, D.E., Bier, D.M.: Modulation of amino acid metabolism by protein and energy intakes. In Amino Acids Metabolism and Medical Applications, G.L. Blackburn et al., editors. Boston-Bristol-London, John Wright, PSG Inc., 1983, pp. 13–28

    Google Scholar 

  50. Alexander, J.W., MacMillan, B.G., Stinnett, J.D., Ogle, C., Bozian, R.C., Fischer, J.E., Oakes, J.B., Morris, M.J., Krummel, R.: Beneficial effects of aggressive protein feeding in severely burned children. Ann. Surg.192:505, 1980

    Google Scholar 

  51. Smith, S.E., Smith, S.A., Brown, P.M.: Cardiac autonomic dysfunction in patients with diabetic retinopathy. Diabetologia21:525, 1981

    Google Scholar 

  52. Wolfe, R.R., Goodenough, R.D., Burke, J.F., Wolfe, M.H.: Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann. Surg.197:163, 1983

    Google Scholar 

  53. Greenberg, G.R., Marliss, E.B., Anderson, G.H., Langer, B., Spence, W., Tovee, E.B., Jeebhoy, K.N.: Protein-sparing therapy in postoperative patients. Effects of added hypocaloric glucose or lipid. N. Engl. J. Med.294:1411, 1976

    Google Scholar 

  54. Nordenström, J., Askanazi, J., Elwyn, D.H., Martin, P., Carpentier, Y.A., Robin, A.P., Kinney, J.M.: Nitrogen balance during total parenteral nutrition. Ann. Surg.197:27, 1983

    Google Scholar 

  55. DeHaven, J., Sherwin, R., Hendler, R., Felig, P.: Nitrogen and sodium balance and sympathetic nervous system activity in obese subjects treated with a low calorie protein or mixed diet. N. Engl. J. Med.302:477, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, U., Clerc, D., Kränzlin, M. et al. Protein-sparing therapy in the postoperative period. World J. Surg. 10, 12–19 (1986). https://doi.org/10.1007/BF01656085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01656085

Keywords

Navigation