Skip to main content
Log in

The neuroendocrine response to multiple trauma

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

The neuroendocrine response to multiple trauma is a coordinated, complex, changing response which has as its objective maintenance of life by preserving oxygen delivery and the mobilization and utilization of the synthetic and energetic substrates required by the body.

The afferent system is composed of neural input from the various chemoceptors, nociceptors, and baroceptors which monitor normal bodily function, in addition to the effects of plasma factors directly on the brain (e.g., glucose and amino acids). The efferent system is composed of the autonomic nervous system and the output of the anterior and posterior pituitary and other hormones. The efferent response is shown by measurements of ACTH, arginine vasopressin, growth hormone, prolactin, norepinephrineepinephrine, and opiate peptides. This efferent output then modulates the response of the pancreatic islets with the observed changes in glucagon and insulin and of the adrenal glands with additional changes in the catechol-amines and cortisol. The renin-angiotensin-aldosterone system involving the kidney and adrenal gland is another responding system.

The preceding relationships are discussed in some detail. Restoration of normal neuroendocrine function is best achieved by prompt restoration of blood volume, relief of pain and anxiety, restoration of normal food intake, excision of damaged tissue, and prevention of subsequent organ failure (e.g., pulmonary).

Résumé

La réaction neuro-endocrinienne provoqué par le polytraumatismé est une réaction variable complexe et coordonnée qui a pour but de maintenir la vie en assurant l'oxygénation tissulaire aussi que la mobilisation et l'emploi des composants synthétiques et énergétiques nécessaires au corps humain.

Le complexe afferent est constitué par les récepteurs chimiques, physiques qui assurent les fonctions normales et les facteurs plasmatiques qui agissent directement sur le cerveau (glucose et acides amines). Le complexe efferent est formé par le système nerveux autonome et par les hormones en particulier hypophysaires antérieures et postérieures. Son action est mésurable par le dosage de l'ACTH, de la vasapressive de l'hormone de croissance, de la prolactine, de la norépinephrine-épinephrine et des peptides opiacès. Cette action se répercute sur les islots de Longerhans du pancreas dont témoignent les modifications du taux du glucagon et de l'insuline et sur les glandes surrénales dont témoignent les modifications des catecholamines et du cortisol. Le complexe angiotensive aldosterone, dépendant des reins et des surrénales participe à cette réaction.

Ces interactions sont étudiées en détail. La restauration de la fonction neuroendocrinienne normale est assurée au mieux par la restauration rapide du volume sanguin, sur la suppression de la douleur et de l'anxiété, par le retour à la normale de l'alimentation par l'exérèse des tissus altérés et par la prévention de la défaillance des différents systèmes organiques (en particular du poumon).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henneman, E.: Organization of the spinal cord and its reflexes. In Medical Physiology, 14th edition, V.B. Mountcastle, editor, St. Louis, C.V. Mosby, 1980, pp. 762–786

    Google Scholar 

  2. Koizumi, K., Brooks, C.M.: The autonomic nervous system and its role in controlling body functions. In Medical Physiology, 14th edition, V.B. Mountcastle, editor, St. Louis, C.V. Mosby, 1980, pp. 893–922

    Google Scholar 

  3. Kircheim, H.R.: Systemic arterial baroreceptor reflexes. Physiol. Rev.56:100, 1976

    Google Scholar 

  4. Gann, D.S.: Endocrine and metabolic responses to injury. In Principles of Surgery, 3rd edition, S.I. Schwartz, editor, New York, McGraw-Hill, 1979, pp. 1–63

    Google Scholar 

  5. Hume, D.M., Edgahl, R.H.: The importance of the brain in the endocrine response to injury. Ann. Surg.150:697, 1959

    Google Scholar 

  6. Edgahl, R.H.: Pituitary-adrenal response following trauma to the isolated leg. Surgery46:9, 1959

    Google Scholar 

  7. Blalock, A.: Experimental shock: The cause of low blood pressure caused by muscle injury. Arch. Surg.20:959, 1930

    Google Scholar 

  8. Guyton, A.C., Jones, C.E., Coleman, T.G.: Circulatory Physiology: Cardiac Output and Its Regulation, 2nd edition, Philadelphia, W.B. Saunders, 1973, pp. 353–450

    Google Scholar 

  9. Braunwald, E., Ross, J.: Control of cardiac performance. In Handbook of Physiology, section 2: The Cardiovascular System, vol. 1, The Heart, R.M. Berne, N. Sperelakis, and S.R. Geiger, editors, Bethesda, American Physiological Society, 1979, pp. 533–580

    Google Scholar 

  10. Wall, P.D., Dubner, R.: Somatosensory pathways. Ann. Rev. Physiol.34:315, 1972

    Google Scholar 

  11. Sato, A., Schmidt, R.F.: Somatosympathetic reflexes: Afferent fibers, central pathways, discharge characteristics. Physiol. Rev.53:916, 1973

    Google Scholar 

  12. Gibbs, F.P.: Central nervous system lesions that block release of ACTH caused by traumatic stress. Am. J. Physiol.217:78, 1969

    Google Scholar 

  13. Makara, G.B., Stark, E., Mihaly, K.: Corticotropin release induced by traumatic stress in rats with unilateral spinal cord lesion. Acta Physiol.38:199, 1970

    Google Scholar 

  14. Redgate, E.S.: Spinal cord and ACTH release in adrenalectomized rats following electrical stimulation. Endocrinology70:263, 1962

    Google Scholar 

  15. Makara, G.B., Stark, E., Palkovits, M., Revesz, T., Mihaly, M.: Afferent pathways of stressful stimuli: Corticotropin release after partial deafferentation of the medial basal hypothalamus. J. Endocrinol.44:187, 1969

    Google Scholar 

  16. Gann, D.S., Ward, D.G., Carlson, D.E.: Neural control of ACTH: A homeostatic reflex. Rec. Prog. Horm. Res.34:357, 1978

    Google Scholar 

  17. Korner, P.I.: Integrative neural cardiovascular control. Physiol. Rev.51:312, 1971

    Google Scholar 

  18. Koizumi, K., Seller, H., Kaufmann, A., Brooks, C.M.: Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res.27:281, 1971

    Google Scholar 

  19. Öberg, B., White, S.: Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol. Scand.80:383, 1970

    Google Scholar 

  20. Mancia, G., Donald, D.E., Shepard, J.T.: Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res.33:713, 1973

    Google Scholar 

  21. Pelletier, C.L., Edis, A.J., Sheperd, J.T.: Circulatory reflex from vagal afferents in response to hemorrhage in the dog. Circ. Res.29:626, 1971

    Google Scholar 

  22. Öberg, B., White, S.: The role of vagal cardiac nerves and arterial baroreceptors in the circulatory adjustments to hemorrhage in the cat. Acta Physiol. Scand.80:395, 1970

    Google Scholar 

  23. Gann, D.S., Ward, D.G., Baertschi, A.J., Carlson, D.E., Maran, J.W.: Neural control of ACTH release in response to hemorrhage. Ann. N.Y. Acad. Sci.297:477, 1977

    Google Scholar 

  24. Koizumi, K., Yamashita, H.: Influence of atrial stretch receptors on hypothalamic neurosecretory neurons. J. Physiol. (London)285:341, 1978

    Google Scholar 

  25. Brennan, L.A., Malvin, R., Jochim, K.E., Roberts, D.E.: Influence of right and left atrial receptors on plasma concentrations of ADH and renin. Am. J. Physiol.221:273, 1971

    Google Scholar 

  26. Cervero, F., Iggo, A.: The substantia gelatinosa of the spinal cord: A critical review. Brain103:717, 1980

    Google Scholar 

  27. Fields, H.L., Basbaum, A.I.: Brainstem control of spinal pain-transmission neurons. Ann. Rev. Physiol.40:217, 1978

    Google Scholar 

  28. Mayer, D.J., Wolfe, T.L., Akil, H., Carder, B., Liebeskind, J.C.: Analgesia from electrical stimulation in the brainstem of the rat. Science174:1351, 1971

    Google Scholar 

  29. Bereiter, D.A., Plotsky, P.M., Gann, D.S.: Tooth pulp stimulation potentiates the ACTH response to hemorrhage in cats. Endocrinology111:1127, 1982

    Google Scholar 

  30. Kunze, D.L.: Rapid resetting of the carotid baroreceptor reflex in the cat. Am. J. Physiol.241:H802, 1981

    Google Scholar 

  31. Tuttle, R.S., McCleary, M.: Sinusal afferents supplying superior cervical ganglion. Am. J. Physiol.242:H168, 1982

    Google Scholar 

  32. Maran, J.W., Carlson, D.E., Grizzle, W.E., Ward, D.G., Gann, D.S.: Organization of the medial hypothalamus for the control of ACTH in the cat. Endocrinology103:957, 1978

    Google Scholar 

  33. Ward, D.G., Bolton, M.G., Gann, D.S.: Inhibitory and fascilatatory areas of the ventral midbrain mediating release of corticotropin in the cat. Endocrinology102:1147, 1978

    Google Scholar 

  34. Vale, W., Spiess, J., Rivier, C., Rivier, J.: Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science213:1394, 1981

    Google Scholar 

  35. Yates, F.E., Rosseu, S.M., Dallman, M.F., Hedge, G.A., McCann, S.M., Dhariwal, A.P.S.: Potentiation by vasopressin of corticotropin release induced by corticotropin releasing factor. Endocrinology88:3, 1976

    Google Scholar 

  36. Yasuda, N., Greer, M.A.: Studies on the corticotropin-releasing activity of vasopressin, using ACTH secretion by cultured rat adenohypophyseal cells. Endocrinology98:936, 1976

    Google Scholar 

  37. Gann, D.S.: Parameters of the stimulus initiating the adrenocortical response to hemorrhage. Ann. N.Y. Acad. Sci.156:740, 1969

    Google Scholar 

  38. Gann, D.S.: Cortisol secretion after hemorrhage: Multiple mechanisms. Nephron23:119, 1979

    Google Scholar 

  39. Maran, J.W., Yates, F.E.: Cortisol secretion during intrapituitary infusion of angiotensin II in conscious dogs. Am. J. Physiol.233:E273, 1977

    Google Scholar 

  40. Yates, F.E., Marsh, D.J., Maran, J.W.: The adrenal cortex. In Medical Physiology, 14th edition, V.B. Mountcastle, editor, St. Louis, C.V. Mosby, 1980, pp. 1558–1601

    Google Scholar 

  41. Lake, R.B., Gann, D.S.: Dynamic response of the intact canine adrenal to infused ACTH. Ann. Biomed. Eng.1:56, 1972

    Google Scholar 

  42. Hume, D.M., Nelson, D.H.: Adrenal cortical function in surgical shock. Surg. Forum6:568, 1955

    Google Scholar 

  43. Cooper, C.E., Nelson, D.H.: ACTH levels in plasma in preoperative and surgically stressed patients. J. Clin. Invest.41:1599, 1962

    Google Scholar 

  44. Hume, D.M., Bell, C.C., Bartter, F.: Direct measurement of adrenal secretion during operative trauma and convalescence. Surgery52:174, 1962

    Google Scholar 

  45. Ingle, D.I.: Permissive action of hormones. J. Clin. Endocrinol. Metab.14:1272, 1954

    Google Scholar 

  46. Pirkle, J.C., Jr., Gann, D.S.: Restitution of blood volume after hemorrhage: Role of the adrenal cortex. Am. J. Physiol.230:1683, 1976

    Google Scholar 

  47. Barton, R.N., Little, R.A.: Effects of inhibition of adrenal steroidogenesis on compensation of fluid loss and on survival after limb ischemia in the rat. J. Endocrinol.76:293, 1978

    Google Scholar 

  48. Järhult, J.: Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol. Scand.89:213, 1973

    Google Scholar 

  49. Pirkle, J.C., Jr., Gann, D.S.: Expansion of interstitial fluid is required for full restitution of blood volume after hemorrhage. J. Trauma16:937, 1976

    Google Scholar 

  50. Drucker, W.R., Chadwick, C.D.J., Gann, D.S.: Transcapillary refill in hemorrhage and shock. Arch. Surg.116:1344, 1981

    Google Scholar 

  51. Rizza, R.A., Mandarino, L.J., Gerich, J.E.: Cortisol-induced insulin resistance in man: Impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J. Clin. Endocrinol. Metab.54:131, 1982

    Google Scholar 

  52. Eigler, N., Sacca, L., Sherwin, R.S.: Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog. J. Clin. Invest.63:114, 1979

    Google Scholar 

  53. Felig, P., Sherwin, R.S., Soman, V., Warren, J., Hendler, R., Sacca, L., Eigler, N., Goldberg, D., Walesky, M.: Hormonal interactions in the regulation of blood glucose. Rec. Prog. Horm. Res.35:501, 1979

    Google Scholar 

  54. Lee, J.B.: The prostaglandins. In Textbook of Endocrinology, R.H. Williams, editor, Philadelphia, W.B. Saunders, 1981, pp. 1047–1063

    Google Scholar 

  55. Parrillo, J.E., Fauci, A.S.: Mechanisms of glucocorticoid action on immune processes. Ann. Rev. Pharmacol. Toxicol.19:179, 1979

    Google Scholar 

  56. Dallman, M.F., Jones, M.T.: Corticosteroid feed-back control of ACTH secretion: Effect of stressinduced corticosterone secretion on subsequent stress responses in the rat. Endocrinology92:1367, 1973

    Google Scholar 

  57. Dallman, M.F., Yates, F.E.: Dynamic asymmetries in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Ann. N.Y. Acad. Sci.156:696, 1969

    Google Scholar 

  58. Jones, M.T., Tiptaft, M., Brush, F.R., Fergusson, D.A.N., Neame, R.L.B.: Evidence for dual corticosteroid-receptor mechanisms in the feedback control of adrenocorticotropin secretion. J. Endocrinol.60:223, 1974

    Google Scholar 

  59. Gann, D.S., Cryer, G.L., Pirkle, J.C., Jr.: Physiological inhibition and fascilatation of adrenocortical response to hemorrhage. Am. J. Physiol.232:R5, 1977

    Google Scholar 

  60. Yates, F.E., Maran, J.W.: Stimulation and inhibition of adrenocorticotropin release. In Handbook of Physiology, section 7, vol. IV, part II, R.O. Greep, E.B. Astwood, editors, Washington, D.C., American Physiological Society, 1975, pp. 367–404

    Google Scholar 

  61. Lilly, M.P., Engeland, W.C., Gann, D.S.: Responses of cortisol secretion to repeated hemorrhage in the anesthetized dog. Endocrinology (In press)

  62. Engeland, W.C., Byrnes, G.J., Presnell, K., Gann, D.S.: Adrenocortical sensitivity to adrenocorticotropin (ACTH) in awake dogs changes as a function of the time of observation and after hemorrhage independently of ACTH. Endocrinology108:2149, 1981

    Google Scholar 

  63. Engeland, W.C., Dallman, M.F.: Neural mediation of compensatory adrenal growth. Endocrinology99:1659, 1976

    Google Scholar 

  64. Pederson, R.C., Brownie, A.C., Ling, N.: Proadrenocorticotropin/endorphin derived peptides: Coordinate action on adrenal steroidogenesis. Science208:1044, 1980

    Google Scholar 

  65. Szalay, K.S., Stark, E.: Effect of β-endorphin on the steroid production of isolated zona glomerulosa and zona fasciculata cells. Life Sci.29:1355, 1981

    Google Scholar 

  66. Robertson, G.L.: The regulation of vasopressin function in health and disease. Rec. Prog. Horm. Res.33:333, 1977

    Google Scholar 

  67. Weitzman, R.E., Reviczky, A., Oddie, T.H., Fisher, D.A.: Effect of osmolality on arginine vasopressin and renin release after hemorrhage. Am. J. Physiol.238:E62, 1980

    Google Scholar 

  68. Claybaugh, J.R., Share, L.: Vasopressin, renin and cardiovascular responses to continuous slow hemorrhage. Am. J. Physiol.224:519, 1973

    Google Scholar 

  69. Thames, M.D., Schmid, P.G.: Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am. J. Physiol.237:H299, 1979

    Google Scholar 

  70. Ramsay, D.J., Keil, L.C., Sharpe, M.C., Shinsako, J.: Angiotensin II infusion increases vasopressin, ACTH and 11-hydroxycorticosteroid secretion. Am. J. Physiol.234:R66, 1978

    Google Scholar 

  71. Mouw, D., Bonjour, J., Malvin, R.L., Vander, A.: Central action of angiotensin in stimulating ADH release. Am. J. Physiol.220:239, 1971

    Google Scholar 

  72. Hayward, J.N.: Functional and morphological aspects of hypothalamic neurons. Physiol. Rev.57:574, 1977

    Google Scholar 

  73. Gottschalk, C.W., Lassiter, W.E.: Mechanisms of urine formation. In Medical Physiology, 14th edition, V.R. Mountcastle, editor, St. Louis, C.V. Mosby, 1980, pp. 1165–1205

    Google Scholar 

  74. Zusman, R.M.: Prostaglandins, vasopressin and renal water reabsorption. Med. Clin. North Am.65:915, 1981

    Google Scholar 

  75. Nakano, J.: Studies on the cardiovascular effects of synthetic vasopressin. J. Pharmacol. Exp. Ther.157:19, 1967

    Google Scholar 

  76. Malayan, S.A., Ramsay, D.J., Keil, L.C., Reid, I.A.: Effects of increases in plasma vasopressin concentration on plasma renin activity, blood pressure, heart rate, and plasma corticosteroid concentration in conscious dogs. Endocrinology107:1899, 1980

    Google Scholar 

  77. Laycock, J.F., Penn, W., Shirley, D.G., Walter, S.J.: The role of vasopressin in blood pressure regulation immediately following hemorrhage in the rat. J. Physiol. (London)296:267, 1979

    Google Scholar 

  78. Aisenbrey, G.A., Handelman, W.A., Arnold, P., Manning, M., Schrier, R.W.: Vascular effects of arginine vasopressin during fluid deprivation in the rat. J. Clin. Invest.67:961, 1981

    Google Scholar 

  79. Hems, D.A., Whitton, P.D.: Control of hepatic glycogenolysis. Physiol. Rev.60:1, 1980

    Google Scholar 

  80. Meyer, V., Knobil, E.: Growth hormone secretion in the unanesthetized rhesus monkey in response to noxious stimuli. Endocrinology80:163, 1967

    Google Scholar 

  81. Glick, S.M., Roth, J., Yalow, R.S., Person, S.A.: The regulation of growth hormone secretion. Rec. Prog. Horm. Res.21:241, 1965

    Google Scholar 

  82. Carey, L.C., Cloutier, C.T., Lowery, B.D.: Growth hormone and adrenal cortical response to shock and trauma in the human. Ann. Surg.174:451, 1971

    Google Scholar 

  83. Martin, J.B., Reichlin, S., Brown, G.M.: Clinical Neuroendocrinology, Philadelphia, F.A. Davis, 1977, pp. 147–178

    Google Scholar 

  84. Frantz, A.G., Rabkin, M.T.: Human growth hormone: Clinical measurement, response to hypoglycemia and suppression by corticosteroids. N. Engl. J. Med.271:1375, 1964

    Google Scholar 

  85. Van Wyk, J., Underwood, L.E., Hintz, R.L., Clemmons, D.R., Voina, S.J., Weaver, R.P.: The somatomedins: A family of insulin-like hormones under growth hormone control. Res. Prog. Horm. Res.30:259, 1974

    Google Scholar 

  86. Daughaday, W.H.: The adrenohypophysis. In Text-book of Endocrinology, 6th edition, R.H. Williams, editor, Philadelphia, W.B. Saunders, 1981, pp. 87–92

    Google Scholar 

  87. Merimee, T.J.: Growth hormone: Secretion and action. In Endocrinology, L.J. DeGroot, editor, New York, Grune and Stratton, 1979, pp. 123–132

    Google Scholar 

  88. Reichlin, S.: Neuroendocrinology. In Textbook of Endocrinology, 6th edition, R.H. Williams, editor, Philadelphia, W.B. Saunders, 1981, pp. 616–618

    Google Scholar 

  89. Franz, A.G.: Prolactin. In Endocrinology, L.J. De-Groot, editor, New York, Grune and Stratton, 1979, pp. 153–168

    Google Scholar 

  90. Jacobs, L.S., Snyder, P.J., Wilber, J.F., Utiger, R.D., Daughaday, W.H.: Increased serum prolactin after administration of synthetic thyrotropin releasing hormone (TRH) in man. J. Clin. Endocrinol. Metab.33:996, 1971

    Google Scholar 

  91. Charters, A.C., Odell, W.D., Thompson, J.C.: Anterior pituitary function during surgical stress and convalescence: Radioimmunoassay measurements of blood TSH, LH, FSH and GH. J. Clin. Endocrinol. Metab.29:63, 1969

    Google Scholar 

  92. Gregerman, R.I., Solomon, N.: Acceleration of thyroxine and triiodothyronine turnover during bacterial pulmonary infections and fever: Implications for the functional state of the thyroid during stress and in senescence. J. Clin. Endocrinol. Metab.27:93, 1967

    Google Scholar 

  93. Cavalieri, R.R., Rapoport, B.: Impaired peripheral conversion of thyroxine to triiodothyronine. Ann. Rev. Med.28:57, 1977

    Google Scholar 

  94. Franchimont, P.: The regulation of follicle stimulating hormone and luteinizing hormone secretion in humans. In Frontiers in Neuroendocrinology, L. Martini, W.F. Ganong, editors, New York, Oxford, 1971, pp. 331–358

    Google Scholar 

  95. DiRocco, R.J., Grill, H.J.: The forebrain is not essential for the sympathoadrenal hyperglycemic response to glucoprivation. Science204:1112, 1979

    Google Scholar 

  96. Egdahl, R.H.: The differential response of the adrenal cortex and medulla to bacterial endotoxin. J. Clin. Invest.38:1120, 1959

    Google Scholar 

  97. Carruthers, M., Taggart, P., Conway, N., Bates, D., Sommerville, W.: Validity of plasma catechol-amines estimations. Lancet2:62, 1970

    Google Scholar 

  98. Deuben, R.R., Buckley, J.P.: Identification of a central site of action of angiotensin II. J. Pharmacol. Exp. Ther.175:139, 1970

    Google Scholar 

  99. Van Loon, G.R., Appel, N.M., Ho, D.: β-endorphin induced stimulation of central sympathetic outflow: β-endorphin increases plasma concentration of epinephrine, norepinephrine and dopamine in rats. Endocrinology109:46, 1981

    Google Scholar 

  100. Zileli, M.S., Gedik, O., Adalar, N., Caglar, S.: Adrenal medullary response to removal of various amounts of blood. Endocrinology95:1477, 1974

    Google Scholar 

  101. Manger, W.M., Bollman, J.L., Maher, F.T., Berk-son, J.: Plasma concentrations of epinephrine and norepinephrine in hemorrhage and anaphylactic shock. Am. J. Physiol.190:310, 1957

    Google Scholar 

  102. Ninomiya, I., Nisimaru, N., Irisawa, H.: Sympathetic nerve activity to the spleen, kidney, and heart in response to baroreceptor input. Am. J. Physiol.221:1346, 1971

    Google Scholar 

  103. Rappaport, E.B., Young, J.B., Landsberg, L.: Effects of 2-deoxy-D-glucose on the cardiac sympathetic nerves and the adrenal medulla of the rat: Further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses. Endocrinology110:650, 1982

    Google Scholar 

  104. Cummings, J.F.: Thoraco-lumbar preganglionic neurons and adrenal innervation in the dog. Acta Anat.73:27, 1969

    Google Scholar 

  105. Douglas, W.W.: Secretomotor control of adrenal medullary secretion: Synaptic, membrane and ionic events in stimulus-secretion coupling. In Handbook of Physiology, section 7, vol. VI, R.O. Greep, E.B. Astwood, editors, Washington, D.C., American Physiological Society, 1975, pp. 367–388

    Google Scholar 

  106. Unger, T., Buu, N.T., Kuchel, O.: Renal handling of free and conjugated catecholamines following surgical stress in the dog. Am. J. Physiol.235:F542, 1978

    Google Scholar 

  107. Ferreira, S.H., Vane, J.R.: Half-lives of peptides and amines in the circulation. Nature215:1237, 1967

    Google Scholar 

  108. Iverson, L.L.: Uptake of circulating catecholamines into tissue. In Handbook of Physiology, section 7, vol. VI, R.O. Greep, E.B. Astwood, editors, Washington, D.C., American Physiological Society, 1975, pp. 713–722

    Google Scholar 

  109. Van Loon, G.R., Sole, M.J.: Plasma dopamine: Source, regulation and significance. Metabolism29 (Suppl. 1):1119, 1980

    Google Scholar 

  110. Alquist, R.P.: A study of adrenotropic receptors. Am. J. Physiol.153:586, 1948

    Google Scholar 

  111. Lands, A.M., Arnold, A., McArluff, J.P., Luduena, F.P., Brown, T.G., Jr.: Differentiation of receptor systems activated by sympathomimetic amines. Nature214:597, 1967

    Google Scholar 

  112. Berthelsen, S., Pettinger, W.A.: A functional basis for classification of alpha-adrenergic receptors. Life Sci.21:595, 1977

    Google Scholar 

  113. Fain, J.N., Garcia-Sainz, J.A.: Role of phosphati-dylinositol turnover in alpha-1 and of adenylate cyclases inhibition in alpha-2 effects of catechol-amines. Life Sci.26:1183, 1980

    Google Scholar 

  114. Cryer, P.E., Rizza, R.A., Haymond, M.W., Gerich, J.E.: Epinephrine and norepinephrine are cleared through beta-adrenergic, but not alpha-adrenergic, mechanism in man. Metabolism29 (Suppl. 1):1114, 1980

    Google Scholar 

  115. Chien, S.: Role of the sympathetic nervous system in hemorrhage. Physiol. Rev.47:214, 1967

    Google Scholar 

  116. Clutter, W.E., Bier, D.M., Shah, S.D., Cryer, P.E.: Epinephrine plasma clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J. Clin. Invest.66:94, 1980

    Google Scholar 

  117. Weiner, N.: Norepinephrine, epinephrine and the sympathomimetic amines. In The Pharmacologic Basis of Therapeutics, 6th edition, L.S. Goodman, A. Gilman, editors, New York, Macmillan, 1981, pp. 138–175

    Google Scholar 

  118. Young, J.B., Landsberg, L.: Catecholamines and intermediary metabolism. Clin. Endocrinol. Metab.6:599, 1977

    Google Scholar 

  119. Himms-Hagen, J.: Effects of catecholamines on metabolism. In Handbook of Experimental Pharmacology 33, Catecholamines, H. Blaschko, E. Muscholl, editors, New York-Heidelberg-Berlin, Springer-Verlag, 1972, pp. 363–464

    Google Scholar 

  120. Rizza, R., Haymond, M., Cryer, P., Gerich, J.: Differential effects of epinephrine on glucose production and disposal in man. Am. J. Physiol.237:E356, 1979

    Google Scholar 

  121. Sacca, L., Vigoritto, C., Cicala, M., Ungaro, B., Sherwin, R.S.: Mechanisms of epinephrine-induced glucose intolerance in normal humans: Role of the splanchnic bed. J. Clin. Invest.69:284, 1982

    Google Scholar 

  122. Johnson, M.D., Shier, D.N., Barger, A.C.: Circulating catecholamines and control of plasma renin activity in conscious dogs. Am. J. Physiol.236:H463, 1979

    Google Scholar 

  123. Johnson, M.D., Barger, A.C.: Circulating catechol-amines in control of renal electrolyte and water excretion. Am. J. Physiol.240:F192, 1981

    Google Scholar 

  124. Gerich, J.E., Lorenzi, M.: The role of the autonomic nervous system and somatostatin in the control of insulin and glucagon secretion. In Frontiers in Neuroendocrinology, vol. 5, W.F. Ganong, L. Martini, editors, New York, Raven, 1978, pp. 265–288

    Google Scholar 

  125. Edwards, A.V., Silver, M.: Comparison of the hyperglycaemic and glycogenolytic responses to catecholamines with those to stimulation of the hepatic sympathetic innervation in the dog. J. Physiol. (London)223:571, 1972

    Google Scholar 

  126. Szabo, A.J., Szabo, O.: Influence of the insulin sensitive central nervous system glucoregulator receptor in hepatic glucose metabolism. J. Physiol. (London)253:121, 1975

    Google Scholar 

  127. Lautt, W.W.: Hepatic nerves: A review of their functions and effects. Can. J. Physiol.58:105, 1980

    Google Scholar 

  128. Kvetnansky, R., Mikulaj, L.: Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology87:738, 1970

    Google Scholar 

  129. Kvetnansky, R., Weise, V.K., Kopin, I.J.: Elevation of adrenal tyrosine hydroxylase and phenyleth-anolamine-N-methyl transferase by repeated immobilization on rats. Endocrinology87:744, 1970

    Google Scholar 

  130. Lilly, M.P., Engeland, W.C., Gann, D.S.: Adrenal medullary responses to repeated hemorrhage in the anesthetized dog. Endocrinology (In press)

  131. Kirshner, N.: Biosynthesis of catecholamines. In Handbook of Physiology, section 7, vol. VI, R.P. Greep, E.B. Astwood, editors, Washington, D.C., American Physiological Society, 1975, pp. 341–355

    Google Scholar 

  132. Thoenen, H., Otten, U.: Role of adrenocortical hormones in the modulation of synthesis and degradation of enzymes involved in the formation of catecholamines. In Frontiers of Neuroendocrinology, vol. 5, W.F. Ganong, L. Martini, editors, New York, Raven, 1978, pp. 163–184

    Google Scholar 

  133. Westfall, T.C.: Local regulation of adrenergic neurotransmission. Physiol. Rev.57:659, 1977

    Google Scholar 

  134. Regoli, D., Park, W.K., Rioux, F.: Pharmacology of angiotensin. Pharmacol. Rev.26:69, 1974

    Google Scholar 

  135. Yamashita, K., Mieno, M., Shimizu, T., Yamashita, E.: Action of prostaglandin E2 on the release of catecholamines from the canine adrenal gland and its interaction with acetylcholine. J. Endocrinol.78:249, 1978

    Google Scholar 

  136. Feuerstein, G., Jimerson, D.C., Kopin, I.J.: Prostaglandins, catecholamines and cardiovascular responses to hemorrhage. Am. J. Physiol.240:R166, 1981

    Google Scholar 

  137. Davis, J.P., Freeman, R.H.: Mechanisms regulating renin release. Physiol. Rev.56:1, 1976

    Google Scholar 

  138. Brosnihan, K.B., Bravo, E.L.: Graded reductions of atrial pressure and renin release. Am. J. Physiol.235:H175, 1978

    Google Scholar 

  139. Hodge, R.L., Lowe, R.D., Vane, J.R.: The effects of alteration of blood volume on the concentration of circulating angiotensin in anesthetized dogs. J. Physiol. (London)185:613, 1966

    Google Scholar 

  140. Dinerstein, R.J., Vannice, J., Henderson, R.C., Roth, L.J., Goldberg, L.I., Kauffman, P.C.: Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in the canine kidney. Sci.205:497, 1979

    Google Scholar 

  141. Levens, N.R., Peach, M.J., Carey, R.M.: Role of the intrarenal renin-angiotensin system in the control of renal function. Circ. Res.48:157, 1981

    Google Scholar 

  142. Peach, M.J.: Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol. Rev.57:313, 1977

    Google Scholar 

  143. Fray, J.C.S.: Stimulus-secretion coupling of renin: Role of hemodynamic and other factors. Circ. Res.47:485, 1980

    Google Scholar 

  144. Carretero, O.A., Scicli, A.G.: The renal kallikreinkinin system. Am. J. Physiol.238:F247, 1980

    Google Scholar 

  145. Gagnon, D.J., Cousineau, D., Boucher, P.J.: Release of vasopressin by angiotensin II and prostaglandin E2 from the rat neurohypophysis in vitro. Life Sci.12:487, 1973

    Google Scholar 

  146. Maran, J.W., Yates, F.E.: Locus of ACTH-releasing action of angiotensin II. Endocrinology94:A118, 1974

    Google Scholar 

  147. Simpson, J.B., Routtenberg, A.: Subfornical organ: Site of drinking elicitation by angiotensin II. Science181:1172, 1973

    Google Scholar 

  148. Ferrario, C.M., Gildenberg, P.L., McCubbin, J.W.: Cardiovascular effects of angiotensin mediated by the central nervous system. Circ. Res.30:257, 1972

    Google Scholar 

  149. Negus, P., Tannen, R.L., Dunn, M.J.: Indomethacin potentiates the vasocontrictor actions of angiotensin II in normal man. Prostaglandins12:175, 1976

    Google Scholar 

  150. Carey, R.M., Thorner, M.O., Ortt, E.M.: Effects of metoclopramide and bromocriptine on the reninangiotensin-aldosterone system in man: Dopaminergic control of aldosterone. J. Clin. Invest.63:727, 1979

    Google Scholar 

  151. Carey, R.M.: Acute dopaminergic inhibition of aldosterone secretion is independent of angiotensin II and adrenocorticotropin. J. Clin. Endocrinol. Metab.54:463, 1982

    Google Scholar 

  152. Somers, J.R., Berg, G., Tuck, M.L., Martin, V.F., Chandler, D.W., Mayes, D.M.: Dopaminergic modulation of 18-hydroxycorticosterone secretion in man. J. Clin. Endocrinol. Metab.54:523, 1982

    Google Scholar 

  153. Kaneto, A., Kajinuma, H., Kosaka, K.: Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Endocrinology96:143, 1975

    Google Scholar 

  154. Bloom, S.R., Edwards, A.V.: The release of pancreatic glucagon and inhibition of insulin in response to stimulation of the sympathetic innervation. J. Physiol. (London)253:157, 1975

    Google Scholar 

  155. Gerich, J.E., Karam, J.H., Forsham, P.H.: Stimulation of glucagon secretion by epinephrine in man. J. Clin. Endocrinol. Metab.37:479, 1973

    Google Scholar 

  156. Porte, D., Jr., Williams, R.H.: Inhibition of insulin release by norepinephrine in man. Science152:1248, 1966

    Google Scholar 

  157. Porte, D.A., Jr., Graber, A.L., Kuzuya, T., Williams, R.H.: The effect of epinephrine on immunoreactive insulin levels in man. J. Clin. Invest.45:228, 1966

    Google Scholar 

  158. Porte, D., Jr., Halter, J.B.: The endocrine pancreas and diabetes mellitus. In Textbook of Endocrinology, 6th edition, R.H. Williams, editor, Philadelphia, W.B. Saunders, 1981, pp. 749–750

    Google Scholar 

  159. Unger, R.H., Orci, L.: Physiology and pathophysiology of glucagon. Physiol. Rev.56:778, 1976

    Google Scholar 

  160. Parmley, W.W., Glick, G., Sonnenblick, E.H.: Cardiovascular effects of glucagon in man. N. Engl. J. Med.279:12, 1968

    Google Scholar 

  161. Carey, L.C., Lowery, B.D., Cloutier, C.T.: Blood sugar and insulin response of humans in shock. Ann. Surg.172:342, 1970

    Google Scholar 

  162. Hiebert, J.M., Celik, A., Soeldner, J.S., Egdahl, R.H.: Insulin response to hemorrhagic shock in the intact and adrenalectomized primate. Am. J. Surg.125:501, 1973

    Google Scholar 

  163. Hughes, J.T., Smith, W., Kosterlitz, H.W., Fotergill, L.A., Morgan, B.A., Morris, H.R.: Identification of two related pentopeptides from the brain with potent opiate agonist activity. Nature258:577, 1975

    Google Scholar 

  164. Morley, J.E.: The endocrinology of the opiates and opiate peptides. Metabolism30:195, 1981

    Google Scholar 

  165. Beaumont, A., Hughes, J.: Biology of opioid peptides. Ann. Rev. Pharmacol. Toxicol.19:245, 1979

    Google Scholar 

  166. Uhl, G.R., Childers, S.R., Snyder, S.H.: Opioid peptides and the opiate receptor. Frontiers in Neuroendocrinology, vol. 5, W.F. Ganong, L. Martini, editors, New York, Raven, 1978, pp. 289–328

    Google Scholar 

  167. Wüster, M., Schulz, R., Herz, A.: Multiple opiate receptors in peripheral tissue preparations. Biochem. Pharmacol.30:1883, 1981

    Google Scholar 

  168. Iwamoto, E.T., Martin, W.R.: Multiple opiate receptors. Med. Res. Rev.1:411, 1981

    Google Scholar 

  169. Lymangrover, J.R., Dokas, L.A., Kong, A., Martin, R., Saffran, M.: Naloxone has a direct effect on the adrenal cortex. Endocrinology109:1132, 1981

    Google Scholar 

  170. Heybach, J.P., Vernikos, J.: Naloxone inhibits and morphine potentiates the adrenal steroidogenic response to ACTH. Eur. J. Pharm.75:1, 1981

    Google Scholar 

  171. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N.M., Rivier, C., Vale, W., Bloom, F.: βendorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science197:1367, 1977

    Google Scholar 

  172. Jessell, T.M., Iversen, L.L.: Opiate antagonists inhibit substance P release from rat trigeminal nucleus. Nature268:549, 1977

    Google Scholar 

  173. Mudge, A.W., Leeman, S.E., Fishbach, G.D.: Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. U.S.A.76:526, 1979

    Google Scholar 

  174. Ruda, M.A.: Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal hormal projection neurons. Science215:1523, 1982

    Google Scholar 

  175. Faden, A.I., Holaday, J.W.: Opiate antagonists: A role in the treatment of hypovolemic shock. Science205:317, 1979

    Google Scholar 

  176. Holaday, J.W., Faden, A.I.: Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res.189:295, 1980

    Google Scholar 

  177. Faden, A.I., Holaday, J.W.: Naloxone treatment of endotoxin shock: Steriospecificity of physiologic and pharmacologic effects in the rat. J. Pharmacol. Exp. Ther.212:441, 1980

    Google Scholar 

  178. Farsang, C., Kunoj, G.: Naloxone reverses the antihypertensive effect of clonidine. Br. J. Pharmacol.67:161, 1979

    Google Scholar 

  179. Moncada, S., Vane, J.R.: Pharmacology and endogenous roles of prostaglandin endoproxides, thromboxane A2 and prostacyclin. Pharmacol. Rev.30:293, 1979

    Google Scholar 

  180. Feigen, L.P.: Actions of prostaglandins in peripheral vascular beds. Fed. Proc.40:1987, 1981

    Google Scholar 

  181. Hyman, A.L., Mathe, A.A., Lippton, H.L., Kadowitz, P.J.: Prostoglandins and the lung. Med. Clin. North Am.65:789, 1981

    Google Scholar 

  182. Hedqvist, P.: Basic mechanisms of prostaglandin action on antonomic neurotransmission. Ann. Rev. Pharmacol. Toxicol.17:259, 1977

    Google Scholar 

  183. Horton, R., Zipser, R., Fichman, M.: Prostaglandins, renal function and vascular regulation. Med. Clin. North Am.65:891, 1981

    Google Scholar 

  184. Dahlen, S., Björk, J., Hedqvist, P., Artors, K., Hammarström, S., Lindgren, J., Samuelsson, B.: Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary venules: In vivo effects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. U.S.A.78:3887, 1981

    Google Scholar 

  185. Hirschowitz, B.I.: H-2 histamine receptors. Ann. Rev. Pharmacol. Toxicol.19:203, 1979

    Google Scholar 

  186. Melmon, K.L.: The endocrinologic function of selected antocoids: Catecholamines, acetylcholine, serotonin and histamine. In Textbook of Endocrinology, 6th edition, R.H. Williams, editor, Philadelphia, W.B. Saunders, 1981, pp. 555–563

    Google Scholar 

  187. Schachter, M.: Kallikreins (Kininogenases)—a group of serine proteases with bioregulatory actions. Pharmacol. Rev.31:1, 1980

    Google Scholar 

  188. Regoli, D., Barabe, J.: Pharmacology of bradykinin and related kinins. Pharmacol. Rev.32:1, 1980

    Google Scholar 

  189. Feldberg, W., Lewis, G.P.: The action of peptides on the adrenal medulla: Release of adrenaline by bradykinin and angiotensin. J. Physiol. (London)171:98, 1964

    Google Scholar 

  190. Menguy, R., Masters, Y.F.: Influences of hyperglycemia on survival after hemorrhagic shock. Adv. Shock Res.1:43, 1979

    Google Scholar 

  191. Byrnes, G.J., Pirkle, J.C., Jr., Gann, D.S.: Cardiovascular stabilization after hemorrhage depends upon restitution of blood volume. J. Trauma18:623, 1978

    Google Scholar 

  192. Gann, D.S., Carlson, D.E., Byrnes, G.J., Pirkle, J.C., Jr., Alien-Rowlands, C.F.: Impaired restitution of blood volume after large hemorrhage. J. Trauma21:598, 1981

    Google Scholar 

  193. Shires, G.T., Cunningham, J.N., Baker, C.R.F., Reeder, S.F., Illmer, H., Wagner, I.Y., Manier, J.: Alterations in cellular membrane function during hemorrhagic shock in primates. Ann. Surg.176:288, 1972

    Google Scholar 

  194. Boyd, D.R., Mansberger, A.R., Jr.: Serum water and osmolal changes in hemorrhagic shock: An experimental and clinical study. Am. Surg.34:744, 1968

    Google Scholar 

  195. Stoner, H.B., Barton, R.N., Little, R.A., Yates, D.W.: Measuring severity of injury. Br. Med. J.2:1247, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants GM27946 and AM26831, and a gift from the Haffenreffer Family Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gann, D.S., Lilly, M.P. The neuroendocrine response to multiple trauma. World J. Surg. 7, 101–118 (1983). https://doi.org/10.1007/BF01655918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01655918

Keywords

Navigation