Abstract
Lasers provide a means of delivering high intensity light to small well-defined areas under precise control. The biological response depends on the light wavelength and intensity and the absorption characteristics of the target organ. The most important effects are thermal and include tissue vaporization, necrosis with later sloughing, and necrosis stimulating an inflammatory response which may lead to local fibrosis. The Carbon Dioxide Laser can cut or vaporize neoplastic tissue in areas accessible to rigid endoscopy, but the more penetrating Nd YAG and Argon laser beams can be transmitted via flexible fibers and have greater potential for destroying larger tumors without unacceptable damage to surrounding areas. More selective tumor phototherapy is possible in some organs by sensitization with HpD (hematoporphyrin derivative) and subsequent treatment with a dye laser. This effect is non-thermal and depends on the production of singlet oxygen by activated HpD. The precision possible for local treatment of solid tumors with lasers is greater than for almost any other techniques, but careful quantitative studies are needed to establish the appropriate treatment parameters in any particular situation.
Résumé
C'est seulement en 1960, 3 ans après la première publication concernant l'action du laser que les communications à propos de son emploi pour traiter les tumeurs apparurent. McGuff et ses collaborateurs rapportèrent d'abord la guérison par photothérapie (laser Rubis) de mélanomes transplantés sur la joue des hamsters. Minton et ses collaborateurs publièrent ensuite des cas de destruction de mélanomes et de sarcomes transplantés chez la souris par le laser Néodymium et démontrèrent que la destruction du processus tumoral était plus complète quand les lasers à hautes énergies étaient employés. Les premiers essais cliniques parurent prometteurs, puis après une période d'enthousiasme un certain scepticisme se fit jour. Ce phénomène était dû d'une part à la difficulté d'employer des lasers adequats, d'autre part à la difficulté d'atteindre par le rayonnement les parties du corps à traiter. L'amélioration ultérieure de l'appareillage devait entraîner le développement de la photothérapie tumorale. Les nouveaux lasers en effet grâce à leur souplesse permettent de transmettre un rayonnement intense et étroit à la zone à atteindre (grâce aux fibres en quartz, aux fibres en verre flexible) ou aux appareils articulés qui s'opposent aux appareils anciens rigides.
Cet article a pour but de définir les interactions entre le rayonnement des lasers et les différents systèmes biologiques ainsi que de discuter les indications de la photothérapie tumorale par rapport aux autres méthodes de traitement des tumeurs.
Resumen
El efecto biológico de la energía del laser depende de la intensidad de la luz, de las características de absorción de los tejidos, de la longitud de la onda y de la respuesta biológica a la energía absorbida. Los tejidos neoplásicos y los traumatizados poseen afinidad por las porfirinas. La captación selectiva por parte de los tejidos malignos puede ser incrementada mediante la utilización de un derivado de la hematoporfirina conocido como el derivado hematoporfirínico (HpD). El mecanismo del efecto citotóxico se basa en la activación del HpD por el haz de laser; el HpD activado convierte el oxígeno, cuyos electrones en su último orbital se encuentran en forma de tripleta, para convertirlos en oxígeno en donde, en sus últimos orbitales se encuentran sueltos o en forma de singleta. El oxiǵeno en forma de singleta es citotóxico para la membrana celular. El efecto es de tipo local, porque el oxígeno en forma de singleta posee una vida media corta y no puede moverse por más de una distancia correspondiente a unos pocos diámetros celulares a partir del lugar de su producción. El potencial de destrucción es máximo en los neoplasmas que tienen elevada afinidad por el HpD, en contraste con los tejidos normales de alrededor. Los estudios experimentales utilizando esta tecnología han demostrado un futuro promisorio, y esta modalidad terapéutica está siendo evaluada clínicamente.
This is a preview of subscription content, access via your institution.
References
- 1.
McGuff, P.E., Bushnell, D., Soroff, H.S., Deterling, R.A.: Studies of the surgical applications of lasers. Surg. Forum14:143, 1963
- 2.
Minton, J.P., Ketcham, A.S., Dearman, J.R., McKnight, W.B.: The effect of neodymium laser radiation on two experimental malignant tumour systems. Surg. Gynecol. Obstet.120:481, 1965
- 3.
Goldman, L., Wilson, R.G.: Treatment of basal cell epithelioma by laser radiation. J.A.M.A.169:773, 1964
- 4.
Mester, E., Cryenes, C., Tota, J.G.: Experimentelle Untersuchungen über die Wirkung von Laserstrahlen auf die Wunheilung. Z. Exper. Chir.2:94, 1969
- 5.
Mester, E., Spiry, T., Szende, B., Tota, J.G.: Effect of laser rays on wound healing. Am. J. Surg.122:532, 1971
- 6.
Mester, E., Toth, N., Mester, A.: The biostimulative effect of laserbeam. Laser Tokyo 1981, Section 22, pp. 4–7
- 7.
Gardner, W.N., Hugh-Jones, P., Carroll, M.A., Hewitt, E.R., Hewitt, H.B., Whimster, W.: Quantitative analysis of effect of neodymium-YAG laser on transplanted mouse carcinomas. Thorax37:594, 1982
- 8.
Bown, S.G., Salmon, P.R., Storey, D.W., Calder, B.M., Kelly, D.F., Adams, N., Pearson, H., Weaver, B.M.O.: Nd YAG laser photocoagulation in the dog stomach. Gut21:818, 1980
- 9.
Kelly, D.F., Bown, S.G., Salmon, P.R., Calder, B.M., Pearson, H., Weaver, B.M.O.: Nature and extent of histological changes induced by argon laser photocoagulation in canine gastric mucosa. Gut21:1047, 1980
- 10.
Goldman, L., editor: The Biomedical Laser. Berlin-Heidelberg-New York, Springer-Verlag, 1981
- 11.
Bown, S.G., Swain, C.P., Edwards, D.A.W., Salmon, P.R.: Palliative relief of malignant upper gastrointestinal obstruction by endoscopic laser therapy. Gut23:A918, 1982
- 12.
Fleischer, D., Kessler, F., Haye, D.: Endoscopic Nd YAG laser therapy for carcinoma of the esophagus: A new palliative approach. Am. J. Surg.143:280, 1982
- 13.
Dixon, J.A., Burt, R.W., Rotemy, R.H., McClosky, D.W.: Endoscopie Argon laser photocoagulation of small sessile colonie polyps. Gastrointest. Endos.28:162, 1982
- 14.
Spinelli, P., Pizzetti, P., Mirabile, V. et al.: Nd YAG laser treatment of the rectal remnant after colectomy for familiar polyposis. Laser Tokyo 1981, Section 23, pp. 49–50
- 15.
Ichikana, T., Nakazawa, S., Ema, Y.: Effects of laser endoscopy on gastric tumours with special reference to correlation with histological types of tumours. Scand. J. Gastroenterol.17 [Suppl. 78]:129, 1982
- 16.
Kasugai, T., Sugiura, H., Itoh, Y. et al.: Endoscopic laser treatment for mucosal tumours of the gastrointestinal tract. Scand. J. Gastroenterol.17 [Suppl. 78]:192, 1982
- 17.
Figge, F.H.J., Weiland, G.S.: Studies on cancer detection and therapy: The affinity of neoplastic embryonic and traumatized tissue for porphyrins and metalloporphyrins. Cancer Res.9:549, 1949
- 18.
Gregorie, H.B., Jr., Edgar, O.H., Ward, J.L., Green, J.F., Richards, T., Robertson, H.C., Jr., Stevenson, T.B.: Hematoporphyrin-derivative fluorescence in malignant neoplasms. Ann. Surg.167:820, 1968
- 19.
Berenbaum, M.C., Bonnett, R., Scourides, P.A.: In vivo activity of components of haematoporphyrin derivative. Br. J. Cancer45:571, 1982
- 20.
Weishaupt, K.R., Gomer, C.J., Dougherty, T.J.: Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res.36:2326, 1976
- 21.
Dougherty, T.J., Gomer, C.J., Weishaupt, K.R.: Energetics and efficiency of photoinactivation of murine tumor cells containing hematoporphyrin. Cancer Res.36:2330, 1976
- 22.
Gomer, C.J., Dougherty, T.J.: Determination of [3H]- and [14C] hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res.39:146, 1979
- 23.
Jori, G., Pizzl, G. Reddi, E., Tomio, L., Salvato, B., Zorat, P., Calzavara, F.: Time dependence of hematoporphyrin distribution in selected tissues of normal rats and in ascites hepatoma. Tumori65:425, 1979
- 24.
Cortese, D.A., Kinsey, J.H.: Endoscopic management of lung cancer with hematophorphyrin derivative phototherapy. Mayo Clin. Proc.57:543, 1982
- 25.
Hayata, Y., Kato, H., Konaka, C., Ono, J., Takizawa, N.: Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest81:269, 1982
- 26.
Dougherty, T.J., Kaufman, J.E., Goldfarb, A., Weishaupt, K.R., Boyle, D., Mittleman, A.: Photoradiation therapy for the treatment of malignant tumors. Cancer Res.38:2628, 1978
- 27.
Forbes, I.J., Cowled, P.A., Leong, A.S.Y., Ward, A.D., Black, R.B., Blake, A.J., Jacka, F.J.: Phototherapy of human tumors using hematoporphyrin derivative. Med. J. Aust.2:489, 1980
- 28.
Proceedings of the Workshop on Porphyrin Sensitization, September, 1981, Washington, D.C. New York, Plenum Press, 1983
- 29.
British Journal of Cancer45 [Suppl. 5], 1982
- 30.
Bleehen, N.M.: Hyperthermia in the treatment of Cancer. Br. J. Cancer45 [Suppl. 5]:96, 1982
- 31.
Cheung, A.Y.: Microwave and radiofrequency techniques for clinical hyperthermia. Br. J. Cancer45 [Suppl. 5]: 16, 1982
- 32.
Hill, C.R.: Ultrasound biophysics: A perspective. Br. J. Cancer45 [Suppl. 5]:46, 1982
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bown, S.G. Phototherapy of tumors. World J. Surg. 7, 700–709 (1983). https://doi.org/10.1007/BF01655209
Issue Date:
Keywords
- High Intensity Light
- Hematoporphyrin
- Carbon Dioxide Laser
- Rigid Endoscopy
- Selective Tumor