Skip to main content
Log in

Mechanisms for increased adenylate cyclase responsiveness to TSH in neoplastic human thyroid tissue

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

We have previously examined TSH receptors and adenylate cyclase (AC) activity in normal and neoplastic human thyroid tissue. We found only minor differences in the affinity and capacity of the TSH receptor between the normal and neoplastic tissue, and yet there was a five-fold greater AC responsiveness in the neoplastic thyroid tissue. To determine why there was a greater AC responsiveness to TSH in most differentiated thyroid neoplasms, we probed the receptor-cyclase unit which consists of at least 3 classes of components: the receptor (R), the guanyl nucleotide regulatory unit (G), and the catalytic unit (C). The G unit binds GTP and forms a link between R and C. We studied the effects of TSH, Gpp(NH)p (a non-hydrolyzable GTP analog) and sodium fluoride (NaF) (which act on G), and forskolin (which acts on C) on the receptor-cyclase unit. The results of these studies demonstrate that: (a) there was a greater AC response to TSH (5/6), Gpp(NH)p (3/5), and NaF (5/6) in T than N; (b) the AC response to forskolin was comparable in T and N in 5/6 patients and higher in T in 1 patient; (c) Gpp(NH)p, NaF, and forskolin all had an additive or synergistic effect when added to TSH in both N and T; (d) NaF and forskolin also had an additive or synergistic effect on AC, whereas Gpp(NH)p and forskolin together in N and Gpp(NH)p and NaF together in T caused a considerably less than additive AC response.

These studies demonstrate that Gpp(NH)p, NaF, and forskolin at optimal concentrations have an additive effect on the AC response to TSH in both normal and neoplastic thyroid tissue and that the altered AC responsiveness to TSH in most, but not all, benign thyroid tumors and differentiated thyroid carcinomas appears to be secondary to an altered guanyl nucleotide regulatory protein.

Résumé

L'auteur a apprécié lors d'études antérieures l'activité des récepteurs T.S.H. et de l'adénylatecyclase (A.C.) au niveau du tissu thyroïdien humain normal et néoplasique. Il a constaté des différences mineures de l'activité des récepteurs T.S.H. entre le tissu thyroïdien normal et le tissu néoplasique mais une activité de l'adénylate-cyclase cinq fois plus grande au niveau du tissu thyroïdien néoplasique. Pour déterminer les causes de ce phénomène particulier, l'unité récepteur-cyclase a été explorée, cette unité comportant 3 éléments constitutifs: l'élément récepteur (R), l'élément régulateur du guanyle-nucléotide (G) et l'élément catalytique (C). L'élément G lie l'élément R et l'élément C.

Les effets sur l'unité récepteur-cyclase de la T.S.H., du Gpp(NH)p (un GTP non hydrolysable), du fluoride de sodium (qui agit sur G) et de la forskoline (qui agit sur C) ont été étudiés. Les résultats de ces études démontrent que:

  1. 1.)

    Il existe une réponse de l'adénylate cyclase plus grande sous l'action de la T.S.H. (5/6), du Gpp (NH) p (3/5) et du NaF (5/6) en présence du parenchyme tumoral.

  2. 2.)

    La réponse à la forskoline a été identique pour le parenchyme normal et le parenchyme tumoral pour 5/6 des patients, sauf dans un cas où elle a été plus élevée.

  3. 3.)

    Les Gpp(NH)p, NaF et forskoline ont tous un effet additif et synergique quand ils sont ajoutés à la T.S.H., qu'il s'agisse de tissu normal ou de tissu tumoral.

  4. 4.)

    Le NaF et la forskoline ont aussi un effet additif ou synergique sur l'adénylate cyclase, alors que le Gpp(NH)p et la forskoline ensemble sur le tissu normal ainsi que le Gpp(NH)p et le NaF ensemble sur le tissu tumoral ont un effet additif considérablement moins marqué que sur l'adénylate cyclase.

Ces études démontrent que le Gpp(NH)p, le NaF et la forskoline à concentration maximum exercent un effet additif sur la réponse de l'adénylate cyclase à la T.S.H. à la fois pour le parenchyme normal et le parenchyme tumoral. La réponse particulière de l'adénylate cyclase à la T.S.H. dans la majorité des cas de tumeurs thyroïdiennes bénignes et de cancers thyroïdiens différenciés apparaît comme secondaire à une modification du processus régulateur guanyle-nucléotide.

Resumen

Numerosos estudios clínicos han demostrado que el tratamiento de pacientes con tumores benignos de tiroides con hormona tiroidea resulta en disminución significativa del tamaño del tumor en alrededor de dos tercios de los pacientes. Otros estudios han demostrado que algunos cánceres diferenciados de la tiroides responden al tratamiento con hormona tiroidea, y que la recurrencia del cáncer se hace menos frecuente y la supervivencia mejor. Soporte adicional que sugiere una relatión importante entre niveles aumentados de TSH y crecimiento del cáncer tiroideo es la elevada tasa de mortalidad por cáncer de tiroides observada en regiones de bocio endémico. Estudios de receptor de TSH y de adenilato ciclasa (AC), y estudios metabolicos, también sustenta el papel importante de TSH en relación al crecimiento y función de las neoplasias tiroideas. Los tumores benignos y los cánceres diferenciados de tiroides poseen receptores de TSH, y estos tumores exhiben incrementada actividad de AC en respuesta a TSH.

Nuestro grupo ha examinado previamente los receptores de TSH y la actividad de la adenilato ciclasa (AC) en tejido tiroideo humano normal y neoplásico. Encontramos apenas pequeñas diferencias en la afinidad y capacidad del receptor de TSH entre el tejido normal y el tejido neoplásico, y sin embargo se presentó un grado de respuesta de la AC cinco veces mayor en el tejido neoplásico tiroideo. Con el objeto de determinar por qué habría mayor grado de respuesta de la AC a TSH en la mayoría de los neoplasmas diferenciados de la tiroides, exploramos la unidad receptor-ciclasa, la cual consiste de por lo menos tres clases de componentes: el receptor (R), la unidad regulatoria guanil nucleótido (G) y la unidad catalítica (C). La unidad G liga GTP y forma una unión entre R y C. Estudiamos los efectos de TSH, Gpp(NH)p (un análogo no hidrolizable de GTP), fluoruro sódico (NaF), el cual actúa sobre G, y forskolina, la cual actúa sobre C, en la unidad receptor-ciclasa. Los resultados de estos estudios demuestran que: (1) hubo una mayor respuesta de la AC a TSH (5/6), Gpp(NH)p (3/5) y NaF (5/6) en T que en N; (2) la respuesta de la AC a la forskalina fue comparable en T y N en 5/6 pacientes y más alta en T en 1 paciente; (3) Gpp(NH)p, NaF y forskolina presentaron un efecto aditivo o sinergístico cuando fueron añadidos a TSH tanto en N como T; (4) NaF y forskolina también presentaron un efecto aditivo o sinergístico sobre AC, en tanto que Gpp(NH)p y forskolina juntas en N, y Gpp(NH)p y NaF juntas en T causaron un efecto considerablemente menor que la respuesta aditiva de AC.

Estos estudios demuestran que Gpp(NH)p, NaF y forskolina a concentraciones óptimas poseen un efecto aditivo sobre la respuesta de AC a TSH tanto en el tejido tiroideo normal como en el neoplásico, y que la alteración en el grado de respuesta de AC a TSH en la mayoría, pero no en la totalidad, de los tumores tiroideos benignos y de los carcinomas diferenciados de tiroides parece ser secundario a una proteína regulatoria guanil nucleótico alterada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruns, P.: Beohachtungen und Untersuchungen uber die Schildrusen behandlung des Krortes. Beitr. Z. Klin. Chirurg.16:521, 1896

    Google Scholar 

  2. Greer, M.A., Astwood, E.B.: Treatment of simple goiter with thyroid. J. Clin. Endocrinol. Metab.13:1312, 1953

    Google Scholar 

  3. Shimaoka, K., Sokal, J.E.: Suppressive therapy of nontoxic goiter. Am. J. Med.57:576, 1974

    Google Scholar 

  4. Clark, O.H.: TSH suppression in the management of thyroid nodules and thyroid cancer. World J. Surg.5:39, 1981

    Google Scholar 

  5. Crile, C., Jr.: The endocrine dependency of certain thyroid cancers and the danger that hypothyroidism may stimulate their growth. Cancer10:1119, 1957

    Google Scholar 

  6. Thomas, C.G., Jr.: Hormonal treatment of thyroid cancer. J. Clin. Endocrinol. Metab.17:232, 1957

    Google Scholar 

  7. Hill, L.D., Beebe, H.G., Hipp, R., Jones, H.W.: Thyroid suppression. Arch. Surg.108:43, 1974

    Google Scholar 

  8. Mazzaferri, E.L., Young, R.L., Oertel, J.E., Kammerer, W.T., Page, C.P.: Papillary thyroid carcinoma: The impact of therapy in 576 patients. Medicine (Baltimore)56:171, 1977

    Google Scholar 

  9. Staunton, M.D., Greening, W.P.: Treatment of thyroid cancer in 293 patients. Br. J. Surg.63:253, 1976

    Google Scholar 

  10. Wynder, E.L.: Some practical aspects of cancer prevention. N. Engl. J. Med.246:573, 1952

    Google Scholar 

  11. Colacchio, T.A., LoGerfo, P., Colacchio, D.A., Feind, C.: Radioiodine total body scan versus serum thyroglobulin levels in follow-up of patients with thyroid cancer. Surgery91:42, 1982

    Google Scholar 

  12. Van Herle, A.J., Klandorf, H., Uller, R.P.: A radioimmunoassay for serum rat thyroglobulin. J. Clin. Invest.56:1073, 1975

    Google Scholar 

  13. Ichikawa, Y., Saito, E., Yoshibumi, A., Homma, M., Muraki, T., Kunito, I.: Presence of TSH receptor in thyroid neoplasms. J. Clin. Endocrinol. Metab.43:395, 1976

    Google Scholar 

  14. Takahashi, H., Jiang, N.S., Gorman, C.A., Lee, C.Y.: Thyrotropin receptors in normal and pathological human thyroid tissues. J. Clin. Endocrinol. Metab.47:870, 1978

    Google Scholar 

  15. Carayon, P., Guibout, M., Lissitzky, S.: Thyrotropin receptor adenylate cyclase system in plasma membranes from normal and diseased human thyroid glands. J. Endocrinol. Invest.1:321, 1978

    Google Scholar 

  16. Field, J.B., Bloom, G., Chou, M.E.Y., Kerins, M.E., Larsen, P.R., Kotani, M., Dekker, A.: Effects of thyroid stimulating hormone on human thyroid carcinoma and adjacent normal tissue. J. Clin. Endocrinol. Metab.47:1052, 1978

    Google Scholar 

  17. Clark, O.H., Castner, B.J.: Thyrotropin “receptor” in normal and neoplastic human thyroid tissue. Surgery85:624, 1979

    Google Scholar 

  18. Clark, O.H., Gerend, P., Cote, T.C., Nissenson, R.A.: Thyrotropin binding and adenylate cyclase stimulation in thyroid neoplasms. Surgery90:252, 1981

    Google Scholar 

  19. Saltiel, A.R., Powell-Jones, C.H.J., Thomas, C.G., Nayfeh, S.N.: Thyrotropin receptor-adenylate cyclase function in human thyroid neoplasms. Cancer Res.41:2360, 1981

    Google Scholar 

  20. DeRubertis, F., Yamashita, K., Dekker, A., Larsen, P.R., Field, J.B.: Effect of thyroid-stimulating hormone on adenyl cyclase activity and intermediary metabolism of “cold” thyroid nodules and normal human thyroid tissue. J. Clin. Invest.51:1109, 1972

    Google Scholar 

  21. Abe, Y., Ichikawa, Y., Muraki, T., Ito, K., Homma, M.: Thyrotropin (TSH) receptor and adenylate cyclase activity in human thyroid tumors: Absence of high affinity receptor and loss of TSH responsiveness in undifferentiated thyroid carcinoma. J. Clin. Endocrinol. Metab.52:23, 1981

    Google Scholar 

  22. Goretzki, P.E., Gerend, P.L., Nissenson, R.A., Clark, O.H.: TSH binding and adenylate cyclase responsiveness in target and non-target tissue. Ann. Endocrinol. 1981, Abst. No. 141

  23. Clark, O.H., Gerend, P.L., Goretzki, P.E., Nissenson, R.A.: Characterization of the TSH receptoradenylate cyclase system in neoplastic human thyroid tissue. J. Clin. Endocrinol. Metab.57:140, 1983

    Google Scholar 

  24. Levine, M.A., Downs, R.W., Moses, A.M., Breslau, N.A., Marx, S.J., Lasker, R., Rizzoli, R.E., Aurbach, G.D., Spiegel, A.M.: Resistance to multiple hormone in patients with pseudohypoparathyroidism. Am. J. Med.74:545, 1983

    Google Scholar 

  25. Cassel, D., Selinger, Z.: Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta452:538, 1976

    Google Scholar 

  26. Dumont, J.E., Takeuchi, A., Lamy, F., Gervy-Decoster, C., Cochauz, P., Roger, P., Van Sande, J., Lecocq, R., Mockel, J.: Thyroid control: An example of a complex cell regulation network. Adv. Cyclic Nucleotide Res.14:479, 1981

    Google Scholar 

  27. Cooper, D.M.F., Londos, C., Rodbell, M.: Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol. Pharmacol.18:598, 1980

    Google Scholar 

  28. Cooper, D.M.F., Londos, C., Gill, D.L., Rodbell, M.: Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J. Neurochem.38:1164, 1982

    Google Scholar 

  29. Cassel, D., Pfeuffer, T.: Mechanism of cholera toxin action: Covalent modification of guanyl nucleotidebinding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA75:2669, 1978

    Google Scholar 

  30. Downs, R.W., Jr., Spiegel, A.M., Singer, M., Reen, S., Aurbach, G.D.: Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein. J. Biol. Chem.255:949, 1980

    Google Scholar 

  31. Fradkin, J.E., Cook, G.H., Kilhoffer, M.C., Wolff, J.: Forskolin stimulation of thyroid adenylate cyclase and cyclic 3′, 5′ adenosine monophosphate accumulation. Endocrinology111:849, 1982

    Google Scholar 

  32. Downs, R.W., Jr., Aurbach, G.D.: The effects of forskolin on adenylate cyclase in S49 wild type and cyccells. J. Cyclic Nucl. Res.8:235, 1982

    Google Scholar 

  33. Seamon, K.B., Padgett, W., Daly, J.W.: Forskolin: Unique diterpene activator of adenylate cyclase in membranes in intact cells. Proc. Natl. Acad. Sci. USA78:3363, 1981

    Google Scholar 

  34. Seamon, K., Daly, J.W.: Activation of adenylate cyclase activity by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. Biol. Chem.256:9799, 1981

    Google Scholar 

  35. Seamon, K.B., Daly, J.W.: Guanosine 5′-(β,γ-imido)-triphosphate inhibition of forskolin-activated adenylate cyclase is mediated by the putative inhibitory guanine nucleotide regulatory protein. Biol. Chem.257:1159, 1982

    Google Scholar 

  36. Clark, O.H., Gerend, P.L., Nissenson, R.A.: TSH binding and adenylate cyclase activation in normal and neoplastic human thyroid tissue: Lack of effect of thyroglobulin. J. Clin. Endocrinol. Metab.54:1157, 1982

    Google Scholar 

  37. Salomon, Y., Londes, C., Rodbell, M.: A highly sensitive adenylate cyclase assay. Anal. Biochem.58:541, 1974

    Google Scholar 

  38. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem.193:265, 1951

    Google Scholar 

  39. Kasagi, K., Konishi, J., Iida, Y., Ikekubo, K., Mori, T., Kuma, K., Torizuka, K.: A new in vitro assay for human thyroid stimulator using cultured thyroid cells: Effect of sodium chloride on adenosine 3′5′monophosphate increase. J. Clin. Endocrinol. Metab.54:108, 1982

    Google Scholar 

  40. Hildebrandt, J.D., Hanoune, J., Birnbaumer, L.: Guanine nucleotide inhibition of cyc-S49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem.257:14723, 1982

    Google Scholar 

  41. Ross, E.M., Gilman, A.G.: Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem.252:6966, 1977

    Google Scholar 

  42. Bourne, H.R., Coffino, P., Tomkins, G.M.: Selection of a variant lymphoma cell deficient in adenylate cyclase. Science187:750, 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Medical Research Service of the Veterans Administration and by a grant from the University of California Academic Senate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, O.H., Gerend, P.L. & Nissenson, R.A. Mechanisms for increased adenylate cyclase responsiveness to TSH in neoplastic human thyroid tissue. World J. Surg. 8, 466–473 (1984). https://doi.org/10.1007/BF01654915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654915

Keywords

Navigation