Skip to main content
Log in

Hormonal control of gastrointestinal motility

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

The objective of these studies was to assess the role of gastrointestinal hormones in controlling gastrointestinal motility. In the proximal stomach, cholecystokinin (CCK), gastrin, and secretin inhibit contractions, thereby decreasing intragastric pressure and slowing gastric emptying of liquids. Gastric inhibitory polypeptide (GIP), glucagon, and vasoactive intestinal peptide (VIP) may also slow gastric emptying, since they also inhibit proximal gastric contractions, but this was not tested. In contrast, motilin augments proximal gastric contractions and speeds gastric emptying of liquids. The contractions of the distal stomach are stimulated by gastrin, CCK, and motilin and inhibited by secretin, gastric inhibitory polypeptide, and VIP. The modulation of distal gastric contractions by these hormones may influence gastric trituration and emptying of solids, but this is unknown. Pyloric contractions are enhanced by CCK and secretin, an effect blocked by gastrin. Such enhancement ought to decrease duodenal-gastric reflux, but again, this is untested. In the small bowel, CCK, gastrin, motilin, VIP, and glucagon stimulate contractions, while secretin inhibits contractions. CCK and motilin speed small bowel transit, but VIP and glucagon slow transit. The cyclical bursts of gastroduodenal contractions that occur during fasting are associated with increased concentrations of motilin in the plasma, whereas the contractions characteristic of the fed state are copied by exogenous administration of gastrin and CCK. Of all these actions, only those of CCK on the proximal stomach, and gastrin on the distal stomach, have been shown to be physiologic so far.

Résumé

L'objet de ce travail est de préciser le rôle des hormones gastro-intestinales dans le contrôle de la motilité digestive. Au niveau de l'estomac proximal, la cholécystokinine (CCK), la gastrine et la sécrétine inhibent les contractions. Elles diminuent la pression intragastrique et ralentissent l'évacuation gastrique des liquides. Le polypeptide inhibiteur gastrique (GIP), le glucagon et le polypeptide intestinal vasoactif (VIP) ralentissent peutêtre aussi la vidange gastrique, car ils inhibent également les contractions gastriques proximales; mais cet effet sur la vidange n'a pas été étudié. A l'opposé, la motiline augmente les contractions de l'estomac proximal et accélère l'évacuation gastrique de liquides. Les contractions de l'estomac distal sont stimulées par la gastrine, la CCK et la motiline; elles sont inhibées par la sécrétine, le GIP et le VIP. Il est possible que la modulation des contractions gastriques par ces hormones influence le brassage intragastrique des aliments et l'évacuation des solides; mais ceci n'a pas été étudié. Les contractions du pylore sont accrues par la CCK et la sécrétine, et cet effet stimulant est bloqué par la gastrine. Cette stimulation devrait, en principe, réduire le reflux duodéno-gastrique; mais ceci n'a pas non plus été démontré. Au niveau de l'intestin grêle, la CCK, la gastrine, la motiline, le VIP et le glucagon stimulent les contractions, qui sont inhibées par la sécrétine. La CCK et la motiline accélèrent le transit intestinal; le VIP et le glucagon le ralentissent. Les bouffées cycliques de contractions gastroduodénales qui surviennent dans l'état de jeûne sont associées a une élévation des concentrations plasmatiques de motiline; les contractions caractéristiques de l'état postprandial sont reproduites par l'administration de gastrine et de CCK. A ce jour, la participation de ces effets hormonaux dans les mécanismes physiologiques n'a été démontrée que pour la CCK sur l'estomac proximal et pour la gastrine sur l'estomac distal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grossman, M.I.: Physiological effects of gastrointestinal hormones. Fed. Proc.36:1930, 1977

    Google Scholar 

  2. Code, C.F., Szurszewski, J.H., Kelly, K.A., Smith, I.B.: A concept of control of gastrointestinal motility. In Handbook of Physiology: A Critical Comprehensive Presentation of Physiological Knowledge and Concepts, Code, C.F., Heidel, W., editors. Baltimore, Waverly Press, 1968, pp. 2881–2896

    Google Scholar 

  3. Szurszewski, J.H.: Mechanism of action of pentagastrin and acetylcholine on the longitudinal muscle of the canine antrum. J. Physiol.252:335, 1975

    Google Scholar 

  4. Vizi, S.E., Bertaccini, G., Impicciatore, M., Knoll, J.: Evidence that acetylcholine released by gastrin and related polypeptides contributes to their effect on gastrointestinal motility. Gastroenterology64:268, 1973

    Google Scholar 

  5. Morgan, K.G., Schmalz, P.F., Go, V.L.W., Szurszewski, J.H.: Effects of pentagastrin, G17 and G34 on the electrical and mechanical activities of canine antral smooth muscle. Gastroenterology (in press)

  6. Morgan, K.G., Schmalz, P.F., Go, V.L.W., Szurszewski, J.H.: Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. Am. J. Physiol. (in press)

  7. Kelly, K.A.: Gastric motility after gastric operations. In Surgery Annual, Nyhus, L.N., editor. New York, Appleton-Century-Crofts, 1974, pp. 103–123

    Google Scholar 

  8. Cannon, W.B., Lieb, C.W.: The receptive relaxation of the stomach. Am. J. Physiol.29:267, 1911

    Google Scholar 

  9. Jansson, G., Martinson, J.: Some quantitative considerations on vagally induced relaxation of the gastric smooth muscle in the cat. Acta Physiol. Scand.63:351, 1965

    Google Scholar 

  10. Wilbur, B.G., Kelly, K.A.: Gastrin pentapeptide decreases canine gastric transmural pressure. Gastroenterology67:1139, 1974

    Google Scholar 

  11. Valenzuela, J.E.: Effect of intestinal hormones and peptides on intragastric pressure in dogs. Gastroenterology71:766, 1976

    Google Scholar 

  12. Okike, N., Kelly, K.A.: Vagotomy impairs pentagastrin-induced relaxation of canine gastric fundus. Am. J. Physiol.232:E504, 1977

    Google Scholar 

  13. Yamagishi, T., Debas, H.T.: Cholecystokinin inhibits gastric emptying by acting on both proximal stomach and pylorus. Am. J. Physiol.234:E375, 1978

    Google Scholar 

  14. Hunt, J.M., Ramsbottom, N.: Effect of gastrin II on gastric emptying and secretion during a test meal. Br. Med. J.4:386, 1967

    Google Scholar 

  15. Debas, H.T., Farooq, O., Grossman, M.I.: Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology68:1211, 1975

    Google Scholar 

  16. Strunz, U.T., Grossman, M.I.: Effect of intragastric pressure on gastric emptying and secretion. Am. J. Physiol. (in press)

  17. Chey, W.Y., Hitanant, S., Hendricks, J., Lorber, S.H.: Effect of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology58:820, 1970

    Google Scholar 

  18. Cooke, A.R.: Control of gastric emptying and motility. Gastroenterology68:804, 1975

    Google Scholar 

  19. Debas, H.T., Yamagishi, T., Dryburgh, J.R.: Motilin enhances gastric emptying of liquids in dogs. Gastroenterology73:777, 1977

    Google Scholar 

  20. Ruppin, H., Domschke, S., Domschke, W., Wunsch, L.D., Jaeger, E., Demling, L.: Effect of 13 nle-motilin in maninhibition of gastric evacuation and stimulation of pepsin secretion. Scand. J. Gastroenterol.10:199, 1975

    Google Scholar 

  21. Carlson, H.C., Code, C.F., Nelson, R.A.: Motor action of the canine gastroduodenal junction: a cineradiographic, pressure, and electric study. Am. J. Dig. Dis.11:155, 1966

    Google Scholar 

  22. Meyer, J.H., Mandiola, S., Shadchehr, A., Cohen, M.: Dispersion of solid food by the canine stomach. Gastroenterology72:1102, 1977

    Google Scholar 

  23. Alvarez, W.C., Mahoney, L.J.: Action currents in stomach and intestine. Am. J. Physiol.58:476, 1922

    Google Scholar 

  24. Kelly, K.A., Code, C.F., Elveback, L.R.: Patterns of canine gastric electrical activity. Am. J. Physiol.217:461, 1969

    Google Scholar 

  25. Kelly, K.A.: Effect of gastrin on gastric myo-electric activity. Am. J. Dig. Dis.15:399, 1970

    Google Scholar 

  26. Cooke, A.R., Chvasta, T.E., Weisbrodt, N.W.: Effect of pentagastrin on emptying and electrical and motor activity of the dog stomach. Am. J. Physiol.223:934, 1972

    Google Scholar 

  27. Gregory, R.A., Tracy, H.: The constitution and properties of two gastrins extracted from hog antral mucosa. Gut5:103, 1964

    Google Scholar 

  28. Green, W.E.R., Ruppin, H., Wingate, D.L., Domschke, W., Wunsch, L.D., Ritchie, H.D.: Effects of 13-nle-motilin on the electrical and mechanical activity of the isolated perfused canine stomach and duodenum. Gut17:362, 1976

    Google Scholar 

  29. Kelly, K.A., Woodward, E.R., Code, C.F.: Effect of secretin and cholecystokinin on canine gastric electrical activity. Proc. Soc. Exp. Biol. Med.130:1060, 1969

    Google Scholar 

  30. Stoddard, C.J., Duthie, H.L.: Effect of vagotomy on the response of gastric myoelectrical activity to glucagon and food. Scand. J. Gastroenterol.11[Suppl. 42]:77, 1976

    Google Scholar 

  31. Brown, J.C., Dryburgh, J.R., Moccia, P., Pederson, R.A.: The current status of GIP. In Gastrointestinal Hormones. Thompson, J.C., editor. Austin, University of Texas Press, 1975, pp. 537–547

    Google Scholar 

  32. Morgan, K.G., Schmalz, P.F., Szurszewski, J.H.: The inhibitory effects of vasoactive intestinal polypeptide on the mechanical and electrical activity of canine antral smooth muscle. J. Physiol. (in press)

  33. Strunz, U.T., Schlegel, J.F., Grossman, M.I., Code, C.F.: Action of gastrin on antral electrical activity. Clin. Res.25:112A, 1977

    Google Scholar 

  34. Fisher, R.S., Lipshutz, W., Cohen, S.: The hormonal regulation of pyloric sphincter function. J. Clin. Invest.52:1289, 1973

    Google Scholar 

  35. Kaye, M.D., Mehta, S.J., Showalter, J.P.: Manometric studies of the human pylorus. Gastroenterology70:477, 1976

    Google Scholar 

  36. Isenberg, J.I., Csendes, A.: Effect of octapeptide of cholecystokinin on canine pyloric pressure. Am. J. Physiol.222:428, 1972

    Google Scholar 

  37. Brink, B.M., Schlegel, J.F., Code, C.F.: The pressure profile of the gastroduodenal junctional zone in dogs. Gut6:163, 1965

    Google Scholar 

  38. Hermon-Taylor, J., Code, C.F.: Localization of the duodenal pacemaker and its role in the organization of duodenal myoelectric activity. Gut12:40, 1971

    Google Scholar 

  39. Prosser, C.L.: Diversity of electrical activity in gastrointestinal muscles. In Proceedings of the Fourth International Symposium on Gastrointestinal Motility, Daniel, E.E., editor. Vancouver, Mitchell Press, 1974, pp. 21–37

    Google Scholar 

  40. Akwari, O.E., Kelly, K.A., Steinbach, J.H., Code, C.F.: Electric pacing of intact and transected canine small intestine and its computer model. Am. J. Physiol.229:1188, 1975

    Google Scholar 

  41. Ramorino, M.L., Colagrande, C.: Intestinal motility: preliminary studies with telemetering capsules and synchronized fluorocinematography. Am. J. Dig. Dis.9:64, 1964

    Google Scholar 

  42. Foulk, W.T., Code, C.F., Morlock, C.G., Bargen, J.A.: A study of the motility patterns and the basic rhythm in the duodenum and upper part of the jejunum of human beings. Gastroenterology26:601, 1954

    Google Scholar 

  43. Code, C.F., Rogers, A.D., Schlegel, J., Hightower, N.C., Jr., Bargen, J.A.: Motility patterns in the terminal ileum: studies in two patients with ulcerative colitis and iliac stomas. Gastroenterology32:651, 1957

    Google Scholar 

  44. Wingate, D.L., Thompson, H.H., Pearce, E.A., Dand, A.: The effects of exogenous cholecystokinin and pentagastrin on myoelectric activity in the small intestine of the conscious fasted dog. In Sixth International Symposium on Gastrointestinal Motility. Edinburgh, 1977, (in press)

  45. Waterfall, W.E., Duthie, H.L., Brown, B.H.: The electrical and motor actions of gastrointestinal hormones on the duodenum in man. Gut14:689, 1973

    Google Scholar 

  46. Weisbrodt, N.W., Copeland, E.M., Kearley, R.W., Moore, E.P., Johnson, L.R.: Effects of pentagastrin on electrical activity of small intestine of the dog. Am. J. Physiol.227:425, 1974

    Google Scholar 

  47. Waterfall, W.E., Brown, B.H., Duthie, H.L., Whittaker, G.E.: The effects of humoral agents on the myoelectrical activity of the terminal ileum. Gut13:528, 1972

    Google Scholar 

  48. Smith, A.N., Hogg, D.: Effect of gastrin II on the motility of the gastrointestinal tract. Lancet1:403, 1966

    Google Scholar 

  49. Logan, C.J.H., Connell, A.M.: The effect of a synthetic gastrin-like pentapeptide (I·.C·I 50, 123) on intestinal motility in man. Lancet1:996, 1966

    Google Scholar 

  50. Mukhopadhyay, A.K., Thor, P.J., Copeland, E.M., Johnson, L.R., Weisbrodt, N.W.: Effect of cholecystokinin on myoelectric activity of small bowel of the dog. Am. J. Physiol.232:E44, 1977

    Google Scholar 

  51. Gutierrez, J.G., Chey, W.Y., Dinoso, V.P.: Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology67:35, 1974

    Google Scholar 

  52. Parker, J.G., Beneventano, T.C.: Acceleration of small bowel contrast study by cholecystokinin. Gastroenterology58:679, 1970

    Google Scholar 

  53. Ramirez, M., Farrar, J.T.: The effect of secretin and cholecystokinin-pancreozymin on the intraluminal pressure of the jejunum in the unanesthetized dog. Am. J. Dig. Dis.15:539, 1970

    Google Scholar 

  54. Dollinger, H.C., Berz, R., Raptis, S., vonWexkull, T.H., Goebell, H.: Effects of secretin and cholecystokinin on motor activity of human jejunum. A radiotelemetry study of jejunal motility during secretin and cholecystokinin intravenous infusion. Digestion12:9, 1975

    Google Scholar 

  55. Person, C.G.A., Ekman, M.: Effect of morphine, cholecystokinin and sympathomimetics on the sphincter of Oddi and intramural pressure in cat duodenum. Scand. J. Gastroenterol.7:345, 1972

    Google Scholar 

  56. Strunz, U., Domschke, W., Mitznegg, P., Domschke, S., Schubert, E., Wunsch, E., Jaeger, E., Demling, L.: Analysis of the motor effects of 13-norleucine motility on the rabbit, guinea pig, rat and human alimentary tract in vitro. Gastroenterology68:1485, 1975

    Google Scholar 

  57. Chey, W.Y., Lee, K.Y., Tai, H.H., Wagner, D., Yajima, H.: A role of endogenous and exogenous motilin on interdigestive myoelectric activity of canine duodenum. In Sixth International Symposium on Gastrointestinal Motility. Edinburgh, 1977, (in press)

  58. Ruppin, H., Sturm, G., Westhoff, D., Domschke, S., Domschke, W., Wusch, E., Demling, L.: Effect of 13-nlemotilin on small intestinal transit time in healthy subjects. Scand. J. Gastroenterol.II[Suppl. 39]:85, 1976

    Google Scholar 

  59. Jaffer, SS., Farrar, J.T., Yau, W.M., Maklouf, G.M.: Mode of action and interplay of vasoactive intestinal peptide (VIP), secretin and octapeptide of cholecystokinin (OCTA-CCK) on duodenal and ileal muscle in vitro. Gastroenterology66:716, 1974

    Google Scholar 

  60. Said, S.I., Maklouf, G.M.: Vasoactive inhibitory polypeptide: spectrum of biological activity. In Endocrinology of the Gut, Chey, W.Y., Brooks, F.P., editors. New Jersey, C.B. Slack, Inc., 1974, pp. 83–87

    Google Scholar 

  61. Kachelhoffer, J., Mendel, C., Dauchel, J., Hohmatter, D., Grenier, J.F.: The effects of VIP on intestinal motility. Study on ex vivo perfused isolated canine jejunal loops. Am. J. Dig. Dis.21:957, 1976

    Google Scholar 

  62. Gustavsson, S., Johansson, H., Lundqvist, G., Nilsson, F.: Effects of vasoactive intestinal peptide and pancreatic polypeptide on small bowel propulsion in the rat. Scand. J. Gastroenterol.12:993, 1977

    Google Scholar 

  63. Lin, T.M., Chance, R.E.: Spectrum: gastrointestinal actions of a new bovine pancreas polypeptide (BPP). Gastroenterology62:852, 1972

    Google Scholar 

  64. Hermon-Taylor, J., Code, C.F.: Effect of secretin on small bowel myoelectric activity of conscious healthy dogs. Am. J. Dig. Dis.15:545, 1970

    Google Scholar 

  65. Mukhopadhyay, A.K., Johnson, L.R., Copeland, E.M., Weisbrodt, N.W.: Effect of secretin on electrical activity of small intestine. Am. J. Physiol.229:484, 1975

    Google Scholar 

  66. Kock, N.G., Darle, N., Dotevall, G.: Inhibition of intestinal motility in man by glucagon given intraperitoneally. Gastroenterology53:88, 1967

    Google Scholar 

  67. Dotevall, G., Kock, N.G.: The effect of glucagon on intestinal motility in man. Gastroenterology45:364, 1963

    Google Scholar 

  68. Necheles, H., Sporn, J., Walker, L.: Effect of glucagon on gastrointestinal motility. Am. J. Gastroenterol.45:34, 1966

    Google Scholar 

  69. Wingate, D.L., Pearce, E.A., Thomas, P.A., Boucher, B.J.: Glucagon stimulates intestinal myoelectric activity. Gastroenterology74:1152, 1978

    Google Scholar 

  70. Bloom, S.R., Royston, C.M.S., Thompson, J.P.S.: Enteroglucagon release in the dumping syndrome. Lancet2:789, 1972

    Google Scholar 

  71. Thomford, N.R., Sirinek, K.R., Crockett, S.E., Mazzaferri, E.L., Cataland, S.: Gastric inhibitory polypeptide: response to oral glucose after vagotomy and pyloroplasty. Arch. Surg.109:177, 1974

    Google Scholar 

  72. Szurszewski, J.H.: A migrating electric complex of the canine small intestine. Am. J. Physiol.217:1757, 1969

    Google Scholar 

  73. Itoh, Z., Aizawa, I., Takeuchi, S., Couch, E.F.: Hunger contractions and motility. In Proceedings of the Fifth International Symposium on Gastrointestinal Motility, Vantrappen, C., editor. Herentals, Typoff Press, 1975, pp. 48–55

    Google Scholar 

  74. Lee, K.Y., Chey, W.Y., Hsin-Hsiung, T., Yajima, H.: Radioimmunoassay of motilin: validation and studies of the relationship between plasma motilin and intragastric myoelectric activity in the duodenum of the dog. Am. J. Dig. Dis. (in press)

  75. Itoh, Z., Takeuchi, S., Aizawa, I., Takayanagi, R.: Effect of synthetic motilin on gastric motor activity in conscious dogs. Am. J. Dig. Dis.22:813, 1977

    Google Scholar 

  76. Itoh, Z., Takayanagi, R., Takeuchi, S., Isshiki, S.: Interdigestive motor activity of Heidenhain pouches in relation to main stomach in conscious dogs. Am. J. Physiol.234:E333, 1978

    Google Scholar 

  77. Carlson, G.M., Bedi, B.S., Code, C.F.: Mechanism of propagation of intestinal interdigestive myoelectric complex. Am. J. Physiol.222:1027, 1972

    Google Scholar 

  78. Marik, F., Code, C.F.: Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology69:387, 1975

    Google Scholar 

  79. Ebeid, A.M., Murray, P.D., Fischer, J.E.: Vasoactive intestinal peptide and the watery diarrhea syndrome. Ann. Surg.187:411, 1978

    Google Scholar 

  80. Gleeson, M.H., Bloom, S.R., Polak, J.M., Henry, K., Dowling, R.H.: Endocrine tumour in kidney affecting small bowel structure, motility, and absorptive function. Gut12:773, 1971

    Google Scholar 

  81. Dubois, A., Van Eerdewegh, P., Gardner, J.D.: Gastric emptying and secretion in Zollinger-Ellison Syndrome. J. Clin. Invest.59:255, 1977

    Google Scholar 

  82. Gregory, R.A., Tracy, H.J.: A note on the nature of the gastrin-like stimulant present in Zollinger-Ellison tumours. Gut5:115, 1964

    Google Scholar 

  83. O'Connor, F.A., Buchanan, K.D., Trimble, E.R., Hayes, J.R., Kennedy, T.L.: Characteristic of glucagon responses to different meals in the dumping syndrome. Gut15:348, 1974

    Google Scholar 

  84. Christofferson, E., Kewenter, J., Kock, N.G.: Intestinal motility during induced dumping syndrome. Acta Clin. Scand.123:405, 1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USPHS NIH Grant AM18278, the Mayo Foundation and the Wellcome Trust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P.A., Akwari, O.E. & Kelly, K.A. Hormonal control of gastrointestinal motility. World J. Surg. 3, 545–552 (1979). https://doi.org/10.1007/BF01654757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654757

Keywords

Navigation