Skip to main content
Log in

K+-independent effects of valinomycin in photosynthetic systems

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

With chromatophores ofRhodospirillum rubrum, valinomycin inhibited electron transport in the presence or absence of K+. NH4Cl had no effect on photophosphorylation but uncoupled with valinomycin present. ATPase activity was stimulated by NH4Cl plus valinomycin but not by either alone. K+ partially reversed the inhibition of phosphorylation and the stimulation of ATPase by valinomycin plus NH4Cl.

With chloroplasts, valinomycin inhibited coupled but not basal electron transport. The inhibition was only partially reversed by uncouplers. Valinomycin stimulated the light-activated Mg2+-dependent ATPase similar to several uncouplers such as quinacrine, methylamine, and S-13. In addition, valinomycin inhibited delayed light emission and stimulated the H+/e ratio. These contrasting activities in chloroplasts are not easily explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Thore, D. L. Keister, N. Shavit, and A. San Pietro,Biochemistry,7 (1968) 3499.

    Google Scholar 

  2. D. L. Keister and N. J. Minton, in:Electron Transport and Energy Conservation, J. Tager, S. Papa, E. Quagliariello, and E. Slater (eds.), Bari, Italy, Adriatica Editrice, in press.

  3. A. Thore, D. L. Keister, and A. San Pietro,Arch. Mikrobiol.,67 (1969) 378.

    Google Scholar 

  4. D. L. Keister and N. J. Yike,Biochemistry,6, (1967) 3847.

    Google Scholar 

  5. L.-V. von Stedingk and H. Baltscheffsky,Arch. Biochem. Biophys.,117 (1966) 400.

    Google Scholar 

  6. A. Thore, D. L. Keister, N. Shavit, and A. San Pietro, in:Progress in Photosynthesis Research, H. Metzner (ed.), International Union Biological Science, Tubingen, 1969, p. 1402.

    Google Scholar 

  7. J. B. Jackson, A. R. Crofts, and L.-V. von Stedingk,European J. Biochem.,6, (1968) 41.

    Google Scholar 

  8. N. Shavit, A. Thore, D. L. Keister and A. San Pietro,Proc. Natl. Acad. Sci., U.S.A.,59, (1968) 917.

    Google Scholar 

  9. J. Neumann and A. T. Jagendorf,Arch. Biochem. Biophys.,107 (1964) 109.

    Google Scholar 

  10. A. Trebst, E. Pistorius, and H. Baltscheffsky,Biochim. Biophys. Acta 143, (1967) 257.

    Google Scholar 

  11. H. Baltscheffsky and B. Arwidsson,Biochim. Biophys. Acta,65 (1962) 425.

    Google Scholar 

  12. H. Sato, K. Takahashi, and G. Kikuchi,Biochim. Biophys. Acta,112 (1966) 8.

    Google Scholar 

  13. T. Beugeling,Biochim. Biophys. Acta 153 (1968) 143.

    Google Scholar 

  14. B. Ke,Biochim. Biophys. Acta,172 (1969) 583.

    Google Scholar 

  15. R. E. McCarty,J. Biol. Chem.,244 (1969) 4292.

    Google Scholar 

  16. P. Plengvidhya and R. H. Burris,Plant Physiol.,40 (1965) 997.

    Google Scholar 

  17. S. J. D. Karlish and M. Avron,FEBS Letters,1, (1968) 21.

    Google Scholar 

  18. S. Izawa, T. N. Connolly, G. D. Winget, and N. E. Good,Brookhaven. Symp. Biol.,19 (1967) 169.

    Google Scholar 

  19. R. E. McCarty, R. J. Guillory, and E. Racker,J. Biol. Chem.,240 (1965) 4822.

    Google Scholar 

  20. E. Gross, N. Shavit, and A. San Pietro,Arch. Biochem. Biophys.,127 (1968) 224.

    Google Scholar 

  21. R. L. Williamson and R. L. Metcalf,Science,158 (1967) 1694.

    Google Scholar 

  22. R. E. McCarty and E. Racker,J. Biol. chem.,242 (1967) 3435.

    Google Scholar 

  23. B. C. Mavne,Photochem. Photobiol.,6 (1967) 189.

    Google Scholar 

  24. M. Avron,J. Biol. Chem.,237 (1962) 2011.

    Google Scholar 

  25. A. Bennun and M. Avron,Biochim. Biophys. Acta.,109 (1965) 117.

    Google Scholar 

  26. B. Petrack, A. Craston, F. Sheppy, and F. Farron,J. Biol. Chem.,240 (1965) 906.

    Google Scholar 

  27. N. Shavit and A. San Pietro,Biochem. Biophys. Res. Commun.,28 (1967) 277.

    Google Scholar 

  28. C. Carmeli and M. Avron,Biochem. Biophys. Res. Commun.,24 (1966) 923.

    Google Scholar 

  29. K. G. Rienits,Biochim. Biophys. Acta.,143, (1967) 595.

    Google Scholar 

  30. G. Hoch and I. Martin,Biochem. Biophys. Res. Commun.,12 (1963) 223.

    Google Scholar 

  31. C. Carmeli and Y. Lifschitz,FEBS Letters,5 (1969) 227.

    Google Scholar 

  32. C. Carmeli,Biochim. Biophys. Acta,189 (1969) 256.

    Google Scholar 

  33. Z. Gromet-Elhanan,Arch. Biochem. Biophys.,123, (1968) 447.

    Google Scholar 

  34. R. A. Dilley,Arch. Biochem. Biophys., (1970) in press.

  35. A. Gomez-Puyou, F. Sandoval, M. Tuena, E. Chavez, and A. Peña,Arch. Biochem. Biophys.,129 (1969) 329.

    Google Scholar 

  36. A. R. Crofts,Biochem. Biophys. Res. Commun.,24 (1966) 127.

    Google Scholar 

  37. R. S. Cockrell and E. Racker,Biochem. Biophys. Res. Commun.,35 (1969) 414.

    Google Scholar 

  38. D. L. Keitser,J. Biol. Chem.,240 (1965) 2673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution number 389 of the Charles F. Kettering Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keister, D.L., Minton, N.J. K+-independent effects of valinomycin in photosynthetic systems. J Bioenerg Biomembr 1, 367–377 (1970). https://doi.org/10.1007/BF01654574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654574

Keywords

Navigation