Skip to main content
Log in

L'innervation de l'uretère

Etude histochimique et ultrastructurale

  • Articles Originaux de Recherche
  • Published:
Anatomia clinica Aims and scope Submit manuscript

Résumé

Le rôle du système nerveux autonome dans la physiologie de l'uretère est un sujet controversé.

L'étude histochimique des catécholamines fluorescentes et de l'acétylcholinestérase démontre l'existence d'une riche innervation adrénergique et cholinergique de l'uretère humain et animal. Cette innervation se caractérise par la présence de fibres nerveuses terminales et de ganglions mixtes (adrénergiques et cholinergiques), situés dans la partie terminale de l'uretère.

L'étude ultrastructurale de l'innervation de l'uretère confirme l'existence d'axones adrénergiques et cholinergiques. Les deux types d'axones forment des varicosités préterminales et terminales tout le long de leur trajet. L'existence de fibres nerveuses adrénergiques est confirmée par l'utilisation de 5-hydroxydopamine, un ≪faux≫ transmetteur sympathique permettant leur indentification sélective. Les deux types d'axones sont observés dans un même filet nerveux en étroite relation l'un avec l'autre, suggérant une interaction possible entre composante adrénergique et cholinergique dans l'uretère. Les terminaisons cholinergiques sont considérées comme étant des récepteurs sensoriels. Des terminaisons purinergiques utilisant les nucléotides cycliques comme transmetteurs s'observent également dans la musculature et la sous-muqueuse urétérale.

Un modèle de l'innervation de l'uretère est proposé à la lumière de ces résultats ultrastructuraux; il prend en considération particulière les étroites et nombreuses connexions intermusculaires et d'autre part la rareté des contacts neuromusculaires étroits.

Ce modèle considère le péristaltisme urétéral comme un phénomène essentiellement myogène, l'influence du système nerveux autonome étant secondaire, susceptible de jouer un rôle dans la régulation de cette activité spontanée en influençant la tonicité urétérale.

Les ganglions urétérovésicaux représentent des ≪neurones adrénergiques courts≫ puisqu'ils dérivent de ganglions sympathiques situés dans l'organe innervé, et ce par opposition à la conception classique du système nerveux autonome.

L'étude en microscopie électronique précise l'ultrastructure des ganglions urétérovésicaux. Elle souligne l'existence de structures adrénergiques représentées par des terminaisons nerveuses adrénergiques et des petites cellules riches en catécholamines. Ces structures sont susceptibles de moduler l'activité ganglionnaire pour intégrer la fonction de l'uretère et de la vessie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  • Barr L, Berger W, Dewey MM (1968) Electrical transmission at the nexus between smooth muscle cells. J Gen Physiol 51: 347–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez HH, Masurovsky EB, Murray MR (1974) Interneurons of the sympathetic ganglia, in organotypic culture. A suggestion as to their function, based on three types of study. J Neurocytol 3: 363–384

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR (1972) Autonomic neuromuscular transmission. Cambridge University Press, Cambridge

    Google Scholar 

  • Bennett MR, Merrillées MCR (1966) An analysis of the transmission of excitation from autonomic nerves to smooth muscles. J Physiol (Lond.) 185: 520

    Article  CAS  Google Scholar 

  • Bergman RA (1958) Intercellular bridges in ureteral smooth muscle. Bull Johns Hopkins Hosp 102: 195–202

    CAS  PubMed  Google Scholar 

  • Birmingham AT (1970) Sympathetic denervation of the smooth muscle of the vas deferens. J Physiol (Lond.) 206: 645–661

    Article  CAS  Google Scholar 

  • Birmingham AT, Wilson AB (1963) Preganglionic and postganglionic stimulation of the guinea-pig isolated vas deferens preparation. Br J Pharmacol Chemother 21: 569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom FE (1975) The role of cyclic nucleotides in central synaptic function. Rev Physiol Biochem Pharmacol 74: 1

    CAS  PubMed  Google Scholar 

  • Boyarsky S, Kirshner N, Labay P (1966) Catecholamine content of the normal dog ureter. Invest Urol 4: 97

    CAS  PubMed  Google Scholar 

  • Boyarsky S, Labay P (1972) Ureteral dynamics. Williams and Wilikins, Baltimore

    Google Scholar 

  • Bozler E (1938) Electrical stimulation and conduction of excitation in smooth muscle. Am J Physiol 122: 614

    Google Scholar 

  • Bozler E (1941) Action potentials and conduction of excitation in muscle. Biol Symp 3: 95–110

    Google Scholar 

  • Bozler E (1948) Conduction automaticity and tonus of visceral smooth muscle. Experientia 4: 213–218

    Article  Google Scholar 

  • Bradley WE, Teague C (1968) The pelvic ganglia. J Urol 100: 649–652

    CAS  PubMed  Google Scholar 

  • Bulbring E (1944) The action of adrenaline on transmission in the superior cervical ganglion. J Physiol 103: 55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock C (1970) Structure of smooth muscle and its innervation. In: Bulbring, Brading, Jones and Tomita (eds) Smooth muscle, Ed. Arnold Publ Ltd, London, p 1–69

    Google Scholar 

  • Burnstock G (1971) Neural nomenclature. Nature 229: 282–283

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24: 509–581

    CAS  PubMed  Google Scholar 

  • Burnstock G, Iwayama T (1971) Fine structural identification of autonomic nerves and their relation to smooth muscle. Progr Brain Res 34: 389–404

    Article  Google Scholar 

  • Cantino D, Mugnaini E (1974) Adrenergic innervation of the parasympathetic ciliary ganglion in the chick. Science 185: 279–281

    Article  CAS  PubMed  Google Scholar 

  • Cauna N, Hinderer KH, Wentges RT (1969) Sensory receptor organs of the human nasal respiratory mucosa. Am J Anat 124: 187–209

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Revzin AM, Kuntzman R, Spector S, Brodie BB (1961) Role for ganglionic norepinephrine in sympathetic synaptic transmission. Science 133: 1822–1823

    Article  CAS  PubMed  Google Scholar 

  • Coupland RE (1972) The chromaffin system. In: H Blaschko and E Muscholl (eds) Catecholamines. Springer-Verlag, Berlin, Heidelberg, New York, p 16–39

    Chapter  Google Scholar 

  • Curtis DR (1963) The pharmacology of central and peripheral inhibition. Pharmacol Rev 15: 333–364

    CAS  PubMed  Google Scholar 

  • Dail WG, Evan AP Jr (1974) Experimental evidence indicating that the penis of the rat is innervated by short adrenergic neurons. Am J Anat 141: 203–218

    Article  PubMed  Google Scholar 

  • De Groat WC, Saum WR (1971) Adrenergic inhibition in mammalian parasympathetic ganglia. Nature (London) New Biol 231: 188–189

    Article  Google Scholar 

  • Dewey MM, Barr L (1962) Intercellular connection between smooth muscle cells: the nexus. Science 137: 670–672

    Article  CAS  PubMed  Google Scholar 

  • Dewey MM, Barr L (1964) A study of the structure and distribution of the nexus. J Cell Biol 23: 553–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disselhorst R (1894) Der Harnleiter der Wibeltiere. Anat Hefte 4: 129–191

    Article  Google Scholar 

  • Dixon JS, Gosling JA (1971) Histochemical and electron microscopic observations on the innervation of the upper segment of the mammalian ureter. J Anat 110: 57–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dun N, Nishi S (1974) Effects of dopamine on the superior cervical ganglion of the rabbit. J Physiol (Lond) 239: 155–164

    Article  CAS  Google Scholar 

  • Eccles RM, Libet B (1961) Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol 157: 484–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Badawi A, Schenck EA (1967) Histochemical methods for separate consecutive and simultaneous demonstration of acetylcholinesterase and noreponephrine in cryostat sections. J Histochem Cytochem 15: 580–588

    Article  CAS  PubMed  Google Scholar 

  • El-Badawi A, Schenck EA (1968) A new theory of the innervation of bladder musculature. Part. I. Morphology of the intrinsic vesical apparatus. J Urol 99: 585–587

    CAS  PubMed  Google Scholar 

  • Elfvin LG (1961) The electron-microscopy investigation of filaments structures in unmyelinated fibers of cat splenic nerve. J Ultrastruct Res 5: 51

    Article  CAS  PubMed  Google Scholar 

  • Elfvin LG (1968) A new granule-containing nerve cell in the inferior mesenteric ganglion of the rabbit. J Ultrastruct Res 22: 37–44

    Article  CAS  PubMed  Google Scholar 

  • Engelmann TW (1869) Zur Physiologie der Ureter. Pflügers Arch Ges Physiol 2: 243

    Article  Google Scholar 

  • Eranko O, Eranko L (1971) Small intensely fluorescent, granule-containing cells in the sympathetic ganglion of the rat. Progr Brain Res 34: 39–51

    Article  Google Scholar 

  • Eranko O, Harkonen M (1965) Monoamine containing smal cells in the superior cervical ganglion of the rat and an organ composed of them. Acta Physiol Scand 63: 511–512

    Article  Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of cathecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10: 348–454

    Article  CAS  Google Scholar 

  • Ferry CB (1963) The post-ganglionic fibres of the vas deferens in the guinea-pig. J Physiol (Lond) 169: 72

    Google Scholar 

  • Foroglou Ch, Winckler G (1973) Caractéristiques du plexus hypogastrique inférieur (pelvien) chez le rat. Bull Assoc Anat 57: 853–866

    Google Scholar 

  • Gabella G (1973) Fine structure of smooth muscle. Phil Trans R Soc Lond B 265: 7–16

    Article  CAS  Google Scholar 

  • Gabella G (1976) Structure of the autonomic nervous system. Chapman and Hall, London

    Book  Google Scholar 

  • Giller FB, Baker WW (1963) Adrenergic mechanisms in ganglionic transmission. Am J Pharmacol 135: 334–350

    CAS  Google Scholar 

  • Gosling JA (1970) The innervation of the upper urinary tract. J Anat 106: 51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamberger B, Norberg KA (1965) Studies on some systems of adrenergic synaptic terminals in the abdominal ganglia of the cat. Acta Physiol Scand 65: 235–242

    Article  CAS  PubMed  Google Scholar 

  • Hamberger B, Norberg KA, Sjoqvist F (1964) Evidence for adrenergic nerve terminals and synapses in sympathetic ganglia. Int J Neuropharmacol 2: 279–282

    Article  Google Scholar 

  • Hanna MK, Jeffs RD, Sturgess JM, Barkin M (1976) Ureteral structure and ultrastructure. Part. I. The normal human ureter. J Urol 116: 718–724

    CAS  PubMed  Google Scholar 

  • Hannappel J, Golenhofen K (1974) The effect of catecholamines on ureteral perstalsis in different species (dog, guinea-pig and rat). Pflügers Arch, 350: 55–68

    Article  CAS  PubMed  Google Scholar 

  • Hillarp NA (1976) Structure of the synapse and the peripheral innervation apparatus of the autonomic nervous system. Acta Anat (suppl. IV) 1–153

    Google Scholar 

  • Hokfelt T (1969) Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta Physiol Scand 76: 427–440

    Article  CAS  PubMed  Google Scholar 

  • Jacobowitz D (1970) Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed Proc 29: 1929–1944

    CAS  PubMed  Google Scholar 

  • Kanerva L (1972) Ultrastructure of sympathetic ganglion cells and granule-containing cells in the paracervical ganglion of the newborn rat. Z Zellforsch 126: 25–40

    Article  CAS  PubMed  Google Scholar 

  • Kaplan N, Elkin M, Sharkey J (1968) Ureteral peristalsis and the autonomic nervous system. Invest Urol 5: 468

    CAS  PubMed  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A ≪ direct-coloring ≫ thiocholine technique for cholinesterase. J Histochem Cytochem 12: 219–221

    Article  CAS  PubMed  Google Scholar 

  • Kebabian JW, Greengard P (1971) Dopamine-sensitive adenyl cyclase possible role in synaptic transmission. Science 174: 1346–1349

    Article  CAS  PubMed  Google Scholar 

  • Kewenter J (1965) The vagal control of the jejunal and ileal motility and blood flows. Acta Physiol Scand 65 (suppl) 251

    Google Scholar 

  • Kill F (1957) The function of the ureter and renal pelvis. Sanders, Philadelphia

    Google Scholar 

  • Kosterlitz MV, Robinson JA (1957) Inhibition of the peristaltic reflux of the isolated guinea-pig ileum. J Physiol 136: 249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntz A (1953) The autonomic nervous system. Lea and Febiger, Philadelphia

    Google Scholar 

  • Kuntz A, Moseley RL (1936) An experimental analysis of the pelvic autonomic ganglia in the cat. J Comp Neurol 64: 63–75

    Article  Google Scholar 

  • Lapides J (1948) The physiology of the human intact ureter. J Urol 59: 501

    CAS  PubMed  Google Scholar 

  • Libertino JA, Weiss RM (1972) Ultrastructure of human ureter. J Urol 108: 71–76

    CAS  PubMed  Google Scholar 

  • Libet B (1970) Generation of slow inhibitory and excitatory postsynaptic potentials. Fed Proc 29: 1945–1956

    CAS  PubMed  Google Scholar 

  • Libet B, Owman Ch (1974) Concomitant changes in formaldehyde induced fluorescence of dopamine interneurons and in slow inhibitory post-synaptic potentials of the rabbit inferior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J Physiol (Lond) 237: 635–662

    Article  CAS  Google Scholar 

  • Libet B, Tosaka T (1970) Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: A different mode of synaptic action. Proc Natl Acad Sci USA 67: 667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewenstein WR (1970) Intercellular communication. Scientific Am 222: 78

    Article  Google Scholar 

  • Lundberg A (1952) Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiol Scand 26: 252–262

    Article  CAS  PubMed  Google Scholar 

  • McDougal MD, West GB (1954) The inhibition of the peristaltic reflux by sympathomimetic amines. Br J Pharmacol 9: 131–137

    CAS  Google Scholar 

  • McLeod DG, Reynolds DG, Swan KG (1973) Adrenergic mechanisms in the canine ureter. Am J Physiol 224: 1054

    CAS  PubMed  Google Scholar 

  • Malin JM Jr, Deane RF, Soyarsky S (1970) Characterization of adrenergic receptors in human ureter. Br J Urol 42: 171

    Article  PubMed  Google Scholar 

  • Marrazzi AS (1939) Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (épinephrine) on sympathetic ganglia. J Pharmacol 67: 395–404

    Google Scholar 

  • Marrazzi AS (1939) Adrenergic hibition at sympathetic synapses. Am Physiol 127: 738–744

    Google Scholar 

  • Matthews MR, Raisman G (1969) The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J Anat 105: 255–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melick WF, Naryka JJ, Schmidt JH (1961) Experimental studies of ureteral peristaltic patterns in the pig. II. Myogenic activity of the pig ureter. J Uorl 86: 46

    CAS  Google Scholar 

  • Merrilless NCR, Burnstock G, Holman ME (1963) Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea-pig vas deferens. J Cell Biol 19: 529

    Article  Google Scholar 

  • Mitchell GAG (1938) The innervation of the kidney, ureter, testicule and epididymis. J Anat 72: 508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadol JB Jr, Brzin M, de Lorenzo AJD (1970) Fine structural localization of acetylcholinesterase in sensory and motor neurons of the muscle receptor organ in Homarus. J Comp Neurol 140: 399–420

    Article  CAS  PubMed  Google Scholar 

  • Norberg KA, Sjoqvist F (1966) New possibilities for adrenergic modulation of ganglionic transmission. Pharmacol Rev 18: 743–751

    CAS  PubMed  Google Scholar 

  • Notley RG (1969) The innervation of the upper ureter in man and in the rat: an ultrastructural study. J Anat 105: 393–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Notley RG (1970) The musculature of the human ureter. Br J Urol 42: 724–727

    Article  CAS  PubMed  Google Scholar 

  • O'Connor VJ Jr, Dawson-Edwards P (1959) Role of the ureter in renal transplantation. I. Studies of denervated ureter with particular reference to uretero-ureteral anatomosis. J. Urol 82: 566

    Google Scholar 

  • Owman Ch, Owman T, Sjoberg NO (1971) Short adrenergic nerves innervating the female urethra in the cat. Experientia 27: 313–315

    Article  CAS  PubMed  Google Scholar 

  • Owman Ch, Sjoberg NO, Sjostrand NO (1974) Short adrenergic neurons, a peripheral neuroendocrine mechanism. In: M Fujiwara and C Tanaka (eds) Amine fluorescence histochemistry. Igaku Shoin Ltd, Tokyo, 47–66

    Google Scholar 

  • Owman C, Sjostrand NO (1965) Short adrenergic neurons and catecholamine-containing cells in vas diferens and accessory male genital glands of different mammals. Z Zellforsch 66: 300–320

    Article  CAS  PubMed  Google Scholar 

  • Pasternak JM, Larrabée MG (1948) Dépression de la transmission synaptique dans les ganglions sympathiques par l'adrénaline. Helv Physiol Acta 6: 62c–63c

    Google Scholar 

  • Pick J (1970) The autonomic nervous system. JB Lippincott Co, Philadelphia

    Google Scholar 

  • Pieper A (1953) Neurovegetative Gebilde in der Wand des menschlichen Nierenbeckens und Ureters sowie ein Beitrag sur neurogenen Theorie der Nierensteinbildung. Z Urol 46: 375

    CAS  PubMed  Google Scholar 

  • Raz S, Zeigler M, Caine M (1972) Hormonal influence on the adrenergic receptors of the ureter. Br J Urol 44: 405–410

    Article  CAS  PubMed  Google Scholar 

  • Reinert H (1963) Role and origin of noradrenaline in the superior cervical ganglion. J Physiol 167: 18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revel JP, Olson W, Karnovsky MJ (1967) A twenty-Angström gap junction with a hexogonal array of subunits in smooth muscle. J Cell Biol 35: 112A

    Google Scholar 

  • Richardson KA (1966) Electron microscopic identification of autonomic nerve endings. Nature (Lond) 210: 756

    Article  CAS  Google Scholar 

  • Rose JG, Gillenwater JY (1974) The effects of adrenergic and cholinergic agents and their blockers upon ureteral activity. Invest Urol 11: 439

    CAS  PubMed  Google Scholar 

  • Satani Y (1919a) Histological study of the ureter J Urol 3: 247

    Google Scholar 

  • Satani Y (1919b) Experimental studies of the ureter. Am J Physiol 49: 474

    Google Scholar 

  • Schulman CC (1973) L'innervation autonome de l'uretère et de la vessie. J Urol Nephrol 79: 12 bis 534–542

    Google Scholar 

  • Schulman CC (1974a) Ultrastructure de l'uretère. J Urol Nephrol 80: 12 bis, 559–571

    Google Scholar 

  • Schulman CC (1974b) Electron microscopy of the human ureteral innervation. Br J Urol 46: 609–623

    Article  CAS  PubMed  Google Scholar 

  • Schulman CC (1975) Ultrastructural evidence for adrenergic and cholinergic innervation of the human ureter. J Urol (Baltimore) 113: 765–771

    CAS  Google Scholar 

  • Schulman CC, Duarte-Escalante O, Boyarsky S (1972) The ureterovesical innervation. Br J Urol 44: 698–712

    Article  CAS  PubMed  Google Scholar 

  • Schulman CC, Duarte-Escalante O, Boyarsky S, Gregoir W (1973) New concepts of ureterovesical innervation. J Urol (Baltimore) 109: 381–384

    CAS  Google Scholar 

  • Sjostrand NO (1962a) Inhibition by ganglionic blocking agents of the motor response of the isolated guinea-pig vas deferens to hypogastric nerve stimulation. Acta Physiol Scand 54: 306–315

    Article  CAS  PubMed  Google Scholar 

  • Sjostrand NO (1962b) Effect of reserpine and hypogastric denervation on the noradrenaline content of the vas deferens of the guinea-pig. Acta Physiol Scand 56: 376–380

    Article  CAS  PubMed  Google Scholar 

  • Sjostrand NO (1965) The adrenergic innervation of the vas deferens and accessory mal genital glands. Acta Physiol Scand 63: (suppl. 257): 1–82

    Google Scholar 

  • Spriggs TLB, Lever JD, Rees PM, Graham JDP (1966) Controlled formaldehyde-catecholamine condensation in cryostat sections to show adrenergic nerves by fluorescence. Stain Technol 41: 323–327

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA, Hull BE (1978) Junctions between living cells. Scientific Am 238: 140–152

    Article  CAS  Google Scholar 

  • Swedin G (1971) Studies on neurotransmission mechanisms in the rat and guinea-pig vas deferens. Acta Physiol Scand 83: (suppl 369)

  • Taxi J, Droz B (1966) Etude de l'incorporation de noradrenaline -3H(Na-3H) et de 5-hydroxy-tryptophene-3H (5-HTP-3H) dans les fibres nerveuses du canal déférent et de l'intestin. CR Acad Sci Paris 263: 1237–1240

    CAS  Google Scholar 

  • Taxi J, Gautron J, L'Hermitte P (1969) Données ultrastructurales sur une éventuelle modulation adrénergique de l'activité du ganglion cervical supérieur du rat. CR Acad Sci Paris 269: 1281–1284

    CAS  Google Scholar 

  • Taxi J, Mikulajova M (1976) Some cytochemical and cytological features of the so-called SIF cells of the superior cervical ganglion of the rat. J Neurocytol 5: 283–295

    Article  CAS  PubMed  Google Scholar 

  • Thoa NG, Axelrod J, Eccleston D (1967) Uptake and relase of C14- serotonin in the noradrenergic neurones of the guinea-pig vas deferens. Pharmacol 9: 251

    Google Scholar 

  • Tranzer JP, Thoenen H (1967) Electromicroscopic localization of 5-hydroxytryptamine (3, 4, 5-trihydroxyphenyl-ethylamine) a new ≪ false ≫ sympathetic transmitter. Experientia 23: 743–745

    Article  CAS  PubMed  Google Scholar 

  • Tranzer JP, Thoenen H, Snipes RL, Richards JG (1969) Recent developments on the ultrastructural aspect of adrenergic nerve endings in various experimental conditions. Prog Brain Res 31: 33–46

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg U (1961) Pharmacology of autonomic ganglia. Annual Rev Pharmacol 1: 219–438

    Article  CAS  Google Scholar 

  • Tum Suden C, Hart ER, Lindenberg R, Marrazzi AS (1951) Pharmacologic and anatomic indications of adrenergic neurons participating in synapses at parasympathetic ganglia. J Pharmacol Chemother 103: 364–365

    Google Scholar 

  • Uehara Y, Burnstock G (1970) Demonstration of ≪ gap junctions ≫ between smooth muscle cells. J Cell Biol 44: 215–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vereecken RL (1973) Dynamical aspects of urine transport in the ureter. Thesis, Katholieke Universiteit van Leuven, Belgium

    Google Scholar 

  • Vereecken RL, Hendrickx H, Casteels R, (1971) Modification of the action potential of the guinea-pig's ureter by catecholamines. Arch Inter Pharmacodyn 192: 208

    CAS  Google Scholar 

  • Watanabe H (1970) Adrenergic nerve endings in the peripheral autonomic ganglion. Experientia (Basel) 26: 69–70

    Article  CAS  Google Scholar 

  • Weir MCL, Mc Lennan H (1963) The action of catecholamines in sympathetic ganglia. Canad J Biochem 41: 2672–2636

    Google Scholar 

  • Weiss RM (1975) Autonomic mediators of ureteral function. Fed Proc 34: 362

    Google Scholar 

  • Weiss RM (1978) Ureteral function. Urology 12: 114–133

    Article  CAS  PubMed  Google Scholar 

  • Weiss RM, Biancani P, Zabinski MP (1974) Adrenergic control of ureteral tonus. Invest Urol 12: 30

    CAS  PubMed  Google Scholar 

  • Williams TH (1967) Electron evidence for an autonomic interneuron. Nature (Lond) 214: 309–310

    Article  CAS  Google Scholar 

  • Williams TH, Black AC, Jr, Chiba T, Bhalla RC (1975) Morphology and biochemistry of small, intensely fluorescent cells of sympathetic ganglia. Nature 256: 315–317

    Article  CAS  PubMed  Google Scholar 

  • Williams TH, Palay SL (1969) Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res 15: 17–34

    Article  CAS  PubMed  Google Scholar 

  • Wolfe DE, Potter LT, Richardson KC, Axelrod J (1962) Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138: 440–441

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, C.C. L'innervation de l'uretère. Anat. Clin 3, 127–142 (1981). https://doi.org/10.1007/BF01654504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654504

Mots clés

Navigation