Communications in Mathematical Physics

, Volume 9, Issue 4, pp 293–302 | Cite as

Quasi-free states of the C.C.R.—Algebra and Bogoliubov transformations

  • J. Manuceau
  • A. Verbeure


We give a complete characterization of quasi-free states (generalized free states) of the C.C.R. algebra. We prove that the pure quasi-free states areall Fock states and that any two Fock states are related through a symplectic automorphism (Bogoliubov transformation). We make an explicit construction of these representations which correspond to primary quasi-free states.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robinson, D. W.: Commun. Math. Phys.1, 159 (1965).Google Scholar
  2. 2.
    Manuceau, J.:C*-algèbre des Relations de Commutation. Ann. Inst. Henri Poincaré2, 139 (1968).Google Scholar
  3. 3.
    Haag, R., N. Hugenholtz, andM. Winnink: Commun. Math. Phys.5, 215–226 (1967).Google Scholar
  4. 4.
    Araki, H., andE. J. Woods: J. Math. Phys.4, 637 (1963).Google Scholar
  5. 5.
    Dunford, N., andJ. T. Schwartz: Linear operators. New-York: Interscience Publ. Inc. 1958.Google Scholar
  6. 6.
    Naimark, M. A.: Normed Rings. N. V. Groningen, The Netherlands: P. Noordhoff 1959.Google Scholar
  7. 7.
    Balslev, E., J. Manuceau, andA. Verbeure: Commun. Math. Phys.8, 315 (1968).Google Scholar
  8. 8.
    Kastler, D.: Commun. Math. Phys.1, 14 (1965).Google Scholar
  9. 9.
    Riesz, F., etB. SZ-Nagy: Leçons d'analyse fonctionnelle. Budapest 1953.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • J. Manuceau
    • 1
  • A. Verbeure
    • 1
  1. 1.Centre de Physique ThéoriqueUniversity of Aix-MarseilleFrance

Personalised recommendations