Skip to main content
Log in

On current-density algebras, gradient terms and saturation

Conserved currents

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The equal time limit of commutator matrix elements of conserved currents is rigorously calculated by means of structures which follow from general principles of relativistic quantum field theory and current conservation. We prove: (a) In general derivatives of δ-functions occur (gradient terms). — (b) The proper (non-gradient) part of the equal time limit is exactly given by the divergence-free causal one particle structures constructed from those intermediate one particle states which have the same main quantum numbers (mass, total spin and total isospin) as one of the external states (saturation by two one particles states!). — (c) All the other intermediate discrete one particle states drop out completely and the continuous many particle states contribute at most to gradient terms. — (d) The gradient terms emerging from the remaining two discrete intermediate one particle states can be removed without any restrictions on the form factors. — (e) From current algebras of conserved currents in the form proposed and used in the literature one cannot deduce any predictions for form factors beyond the algebraic conditions for coupling constants which already follow from the algebra of the charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Gell-Mann, M., andYuval Ne'eman: The Eightfold way. New York: W. A. Benjamin 1964.

    Google Scholar 

  2. Adler, S. L.: Phys. Rev. Letters14, 1051 (1965).

    Google Scholar 

  3. Weisberger, W. I.: Phys. Rev. Letters14, 1047 (1965).

    Google Scholar 

  4. Fubini, S., andG. Furlan: Physics1, 229 (1965).

    Google Scholar 

  5. ——, andC. Rossetti: Nuovo Cimento40 A, 1171 (1965).

    Google Scholar 

  6. Schroer, B., andP. Stichel: Commun. Math. Phys.3, 258 (1966).

    Google Scholar 

  7. Renner, B.: Lectures on current algebras. Rutherford Laboratory Report, RHELIR126 (1966).

  8. Dashen, R., andM. Gell-Mann: Phys. Rev. Letters17, 340 (1966).

    Google Scholar 

  9. Segré, G.: Talk given at the Eastern Theoretical Physics Conference (1967).

  10. Zimmermann, W.: Nuovo Cimento13, 503 (1959).

    Google Scholar 

  11. —— Nuovo Cimento16, 690 (1960).

    Google Scholar 

  12. Symanzik, K.: J. Math. Phys.1, 249 (1960).

    Google Scholar 

  13. —— In: Symposia on theoretical physics, Vol. 3. New York: Plenum Press 1967.

    Google Scholar 

  14. Streater, R. F.: Nuovo Cimento25, 274 (1962).

    Google Scholar 

  15. Völkel, A. H.: Commun. Math. Phys.2, 176 (1966).

    Google Scholar 

  16. —— Commun. Math. Phys.5, 57 (1967).

    Google Scholar 

  17. Völkel, U., andA. H. Völkel: Commun. Math. Phys.7, 261 (1968).

    Google Scholar 

  18. Vladimirov, V. S.: Methods of the theory of functions of several complex variables. The M.I.T. Press, Cambridge, Massachusetts, 1966.

    Google Scholar 

  19. Jost, R., andH. Lehmann: Nuovo Cimento5, 1598 (1957).

    Google Scholar 

  20. Dyson, F. J.: Phys. Rev.110, 1460 (1958).

    Google Scholar 

  21. Wightman, A. S.: In: Dispersion relations and elementary particles. Paris: Hermann 1960.

    Google Scholar 

  22. Völkel, A. H.: Mass relations for particles of arbitrary spin. Ann. Phys. (to appear).

  23. Källén, G.: Elementary particle physics. London: Addison-Wesley Publ. Comp. 1964.

    Google Scholar 

  24. Kramer, G., andK. Meetz: Desy Report 66/8, Hamburg 1966.

  25. Bardakci, K., M. B. Halpern, andG. Segré: Phys. Rev.158, 1544 (1967).

    Google Scholar 

  26. Meyer, J. W., andH. Suura: Phys. Rev.160, 1366 (1967).

    Google Scholar 

  27. Schroer, B. andP. Stichel: Phys. Rev.162, 1394 (1967).

    Google Scholar 

  28. Dietz, K., andJ. Kupsch: Nuovo Cimento52A, 918 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the U.S. Atomic Energy Commission under Contract AT (30-1)-3829.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Völkel, U., Schroer, B. & Völkel, A.H. On current-density algebras, gradient terms and saturation. Commun.Math. Phys. 10, 69–92 (1968). https://doi.org/10.1007/BF01654134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654134

Keywords

Navigation