Advertisement

Zeitschrift für Ernährungswissenschaft

, Volume 30, Issue 4, pp 239–267 | Cite as

Nutrient interactions with reference to amino acid and protein metabolism in non-ruminants; particular emphasis on protein-energy relations in man

  • V. R. Young
Übersicht

Summary

Because the regulation of protein and energy balance is of major research interest in the nutrition and physiology of humans and animals, a selected account of interactions between protein and energy is given here, with particular emphasis on studies in human subjects. The discussion begins with reference to the relations between protein and energy intakes and nitrogen balance; selected aspects of the relations between protein dynamics and energy metabolism among the various mammalian species are then considered. This leads to a brief account of oxidative amino acid catabolism and its relevance to the assessment of amino acid requirements, particularly in adult man. It is concluded that obligatory oxidative losses of amino acids can be used to predict or approximate amino acid requirements in children and adults. The nitrogen-sparing properties of carbohydrate and lipid-derived fuels are then considered. Despite the well-known and profound, yet differential, impacts of dietary protein and energy sources, and their interactions on body protein balance, there remain wide gaps in our understanding of the mechanisms responsible for their effects, such as the quantitative and mechanistic involvement of hormones, including insulin and the counter-regulatory hormones, and the roles played by the major amino acids responsible for the interorgan transport of nitrogen and the regulation of urea production. Additional studies focusing on metabolic nitrogen trafficking would significantly enhance an understanding of how protein and energy interact to achieve the efficient utilization of dietary protein for maintenance and promotion of lean body gain.

Key words

protein energy amino acids, turnover, synthesis, breakdown, oxidation nitrogen balance sparing glucose carbohydrate lipid, requirements hormones, insulin counter-regulatory hormones glucagon epinephrine glucocorticoids muscle basal metabolic rate 

Zusammenfassung

Da die Balance zwischen Proteinstoffwechsel und Energieumsatz von großer Bedeutung in der Ernährung und Stoffwechselphysiologie von Mensch und Tier ist, wird eine Gesamtbetrachtung der Interaktionen zwischen Protein und Energie vorgenommen mit spezieller Berücksichtigung von Studien am Menschen selbst. Zunächst wird auf die Beziehung zwischen Protein und Energieaufnahme zur Stickstoffbilanz eingegangen und danach auf ausgewählte Aspekte der Relation des Proteinstoffwechsels zum Energieumsatz bei verschiedenen Säugetier-Spezies. Dies führt zu einer kurzen Besprechung des oxidativen Aminosäurenabbaus und seiner Bedeutung für die Bestimmung des Aminosäurenbedarfs vor allem beim Erwachsenen. Es wird der Schluß gezogen, daß die unausweichlichen Verluste durch Oxidation der Aminosäuren für die Berechnung oder zumindest Schätzung des Aminosäurenbedarfs von Kindern und Erwachsenen geeignet sind. Die N-sparenden Eigenschaften der Kohlenhydrate und Lipide werden danach besprochen. Trotz der gut bekannten und profunden, wenn auch vielschichtigen Wirkungen der Nahrungsproteine und Energieträger sowie ihrer Interaktionen auf die Balance der Körperproteine bleiben weite Lücken in unserem Verständnis der Wirkungsmechanismen übrig. Dazu gehören z. B. die quantitative und mechanistische Einwirkung der Hormone einschl. Insulin und der gegenregulatorisch wirksamen Hormone sowie die Rolle derjenigen Aminosäuren, die hauptsächlich für den Transport des Stickstoffs zwischen den Organen und für die Regulation der Harnstoffproduktion verantwortlich sind. Zusätzliche Studien mit dem Ziel, die Stoffwechselwege des Stickstoffs zu ergründen, würden das Verständnis der Frage verbessern, wie Proteine und Energie zusammenwirken, um eine effiziente Verwertung des Nahrungsproteins für die Erhaltung und Steigerung der fettfreien Körpermasse zu erreichen.

Schlüsselwörter

Proteine Energie Aminosäuren-Stoffwechsel Synthese, Abbau, Oxidation Stickstoff-Bilanz Sparmechanismen Glucose Kohlenhydrate Lipide, Bedarf Hormone, Insulin gegenregulatorisch wirksame Hormone Adrenalin Glucocorticoide Muskeln Grundumsatz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate C, Patel L, Rauscher FJ III, Curran T (1990) Science 249:1157–1161CrossRefGoogle Scholar
  2. 2.
    Abbott WGH, Howard BV, Christin L, Freymond D, Lillioja S, Boyce VL, Anderson TE, Bogardus C, Ravussin E (1988) Am J Physiol 255:332E-337EGoogle Scholar
  3. 3.
    Arfvidsson B, Zachrisson H, Moller-Loswick A-C, Hyltander A, Sandstrom R, Lundholm K (1991) Am J Physiol 260:46E-52EGoogle Scholar
  4. 4.
    Baker DH, Becker DE, Norton HW, Jensen AH, Harmon BG (1966) J Nutr 88:391–396Google Scholar
  5. 5.
    Baker DH, Becker DE, Norton HW, Jensen AH, Harmon BG (1966) J Nutr 89:441–447Google Scholar
  6. 6.
    Baker JP, Detsky AS, Stewart S, Whitwell J, Marliss EB, Jeejeebhoy KN (1984) Gastroenterol 87:53–59Google Scholar
  7. 7.
    Beaufrere B, Tessari P, Cattalini M, Miles J, Haymond MW (1985) Am J Physiol 249:175E-182EGoogle Scholar
  8. 8.
    Beaufrere B, Horber FF, Schwenk WF, Marsh HM, Matthews D, Gerich JE, Haymond MW (1989) Am J Physiol 257:712E-721EGoogle Scholar
  9. 9.
    Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ (1989) Clin Sci 76:447–454CrossRefGoogle Scholar
  10. 10.
    Bennet WM, Connaher AA, Scrimgeour CM, Jung RT, Rennie MJ (1990) Am J Physiol 259:185E-194EGoogle Scholar
  11. 11.
    Black JL, Griffiths DA (1975) Brit J Nutr 33:399–412CrossRefGoogle Scholar
  12. 12.
    Blaxter KL (1989) Energy metabolism in animals and man. Cambridge University Press, Cambridge, UK, 336 pagesGoogle Scholar
  13. 13.
    Brody S (1945) Bioenergetics and growth, with special reference to the efficiency complex in domestic animals. Reinhold Publishing Corp., New YorkGoogle Scholar
  14. 14.
    Calloway DH, Spector H (1954) Am J Clin Nutr 2:405–412Google Scholar
  15. 15.
    Campbell RG (1988) Nutr Res Revs 1:233–253CrossRefGoogle Scholar
  16. 16.
    Carr JR, Boorman KN, Cole DJA (1977) Brit J Nutr 37:143–155CrossRefGoogle Scholar
  17. 17.
    Castellino P, Luzi L, Simonson DC, Haymond M, DeFronzo RA (1987) J Clin Invest 80:1784–1793CrossRefGoogle Scholar
  18. 18.
    Cathcart EP (1909) J Physiol 39:311–330CrossRefGoogle Scholar
  19. 19.
    Consoli A, Nurjhan N, Reilly JJ jr, Bier DM, Gerich JE (1990) Am J Physiol 259:677E-684EGoogle Scholar
  20. 20.
    Couet C, Fukagawa NK, Matthews DE, Bier DM, Young VR (1990) Am J Physiol 258:78E-85EGoogle Scholar
  21. 21.
    Darmaun D, Matthews DE, Bier DM (1988) Am J Physiol 255:366E-373EGoogle Scholar
  22. 22.
    Elia M, Livesey G (1983) Clin Sci 64:517–526CrossRefGoogle Scholar
  23. 23.
    Elia M, Neale G, Livesey G (1985) Clin Sci 69:123–133CrossRefGoogle Scholar
  24. 24.
    Elwyn DH (1980) Crit Care Med 8:9–20CrossRefGoogle Scholar
  25. 25.
    Elwyn DH, Gump FE, Iles M, Long Cl, Kinney JM (1988) Metabolism 27:325–331CrossRefGoogle Scholar
  26. 26.
    FAO/WHO (1973) Energy and protein requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee. WHO Technical Report Series, No. 522, World Health Organization, Geneva, SwitzerlandGoogle Scholar
  27. 27.
    FAO/WHO/UNU (1985) Energy and protein requirements. Report of a joint FAO/WHO/UNU Consultation.Tech Rep Ser No. 724, 1985 World Health Organization, Geneva, SwitzerlandGoogle Scholar
  28. 28.
    Felig P, Wahren J, Hendler R (1975) Diabetes 24:468–475CrossRefGoogle Scholar
  29. 29.
    Ferrannini E, Wahren J, Felig P, DeFranzo RA (1980) Metabolism 29:28–35CrossRefGoogle Scholar
  30. 30.
    Ferrannini E, Barrett EJ, Bevilacqua S, Jacob R, Walesky M, Sherwin RS, DeFronzo RA (1986) Am J Physiol 250:686E-694EGoogle Scholar
  31. 31.
    Flakoll PJ, Kulaylat M, Frexes-Steed M (1990) Am J Physiol 257:839E-847EGoogle Scholar
  32. 32.
    Folin O (1905) Am J Physiol 13:66–115Google Scholar
  33. 33.
    Folin O (1905) Am J Physiol 13:117–138Google Scholar
  34. 34.
    Frexes-Steed M, Warner ML, Bulus N, Flakoll P, Abumrad MN (1990) Am J Physiol 258:907E-917EGoogle Scholar
  35. 35.
    Fryburg DA, Barrett GJ, Louard RJ, Gelfand RA (1990) Am J Physiol 259:477E-482EGoogle Scholar
  36. 36.
    Fukagawa NK, Minaker KL, Rowe JW, Goodman MN, Matthews DE, Bier DM, Young VR (1985) J Clin Invest 76:2306–2311CrossRefGoogle Scholar
  37. 37.
    Fukagawa NK, Minaker KL, Rowe JW, Matthews DE, Bier DM, Young VR (1988) Metabolism 37:371–377CrossRefGoogle Scholar
  38. 38.
    Fukagawa NK, Minaker KL, Young VR, Matthews DE, Bier DM, Rowe JW (1989) Am J Physiol 256:288E-294EGoogle Scholar
  39. 39.
    Fuller MF, Weekes TEC, Cadenhead A, Bruce JB (1977) Brit J Nutr 38:489CrossRefGoogle Scholar
  40. 40.
    Fuller MF, McWilliam R, Wang TC, Giles LR (1989) Brit J Nutr 62:255–267CrossRefGoogle Scholar
  41. 41.
    Garber AJ, Karl JE, Kipnis DM (1976) J Biol Chem 251:851–857Google Scholar
  42. 42.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) J Clin Invest 74:2238–2248CrossRefGoogle Scholar
  43. 43.
    Gelfand RA, Barrett EJ (1987) J Clin Invest 80:1–6CrossRefGoogle Scholar
  44. 44.
    Gill M, France J, Summers M, McBridge BW, Milligan LP (1989) J Nutr 119:1287–1299Google Scholar
  45. 45.
    Hoerr RA, Matthews DE, Bier DM, Young VR (1991) Am J Physiol 260:111E-117EGoogle Scholar
  46. 46.
    Horber FF, Haymond MW (1990) J Clin Invest 86:265–272CrossRefGoogle Scholar
  47. 47.
    Kayali AG, Young VR, Goodman MN (1986) Am J Physiol 252:621E-626EGoogle Scholar
  48. 48.
    Kayali AG, Goodman MN, Lin J, Young VR (1990) Am J Physiol 259:699E-705EGoogle Scholar
  49. 49.
    Kraenzlin ME, Keller V, Keller A, Thelin A, Arnaud MJ, Stauffacher W (1989) J Clin Invest 84:388–393CrossRefGoogle Scholar
  50. 50.
    Krempf M, Hoerr RA, Pelletier VA, Marks LA, Gleason R, Young VR (1991) An isotopic study of the effect of dietary carbohydrate on splanchnic uptake of dietary leucine and phenylalanine (submitted for publication)Google Scholar
  51. 51.
    Krezowski PA, Nuttal FZ, Gannon MC, Bartosh NH (1986) Am J Clin Nutr 44:847–856Google Scholar
  52. 52.
    Lamont LS, Patel DG, Kalhan SS (1989) J Appl Physiol 67:221–225Google Scholar
  53. 53.
    Matthews DE, Pesola G, Campbell RG (1990) Am J Physiol 258:948E-956EGoogle Scholar
  54. 54.
    Miles JM, Nissen SL, Rizza RA, Gerich JE, Hayward WW (1983) Diabetes 32:197–205CrossRefGoogle Scholar
  55. 55.
    Miles JM, Nissen SL, Gerich JE, Haymond MW (1984) Am J Physiol 247:166E-172EGoogle Scholar
  56. 56.
    Millward DJ, Rivers JPN (1988) Europ J Clin Nutr 42:367–393Google Scholar
  57. 57.
    Millward DJ, Price GM, Pacy PJH, Halliday D (1990) Proc Nutr Soc 49:473–487CrossRefGoogle Scholar
  58. 58.
    Munro HN (1951) Physiol Rev 32:449–488Google Scholar
  59. 59.
    Munro HN (1964) In: Munro HN, Allison JB (ed) Mammalian Protein Metabolism. Academic Press, New York. Chpt 1, pp 381–481CrossRefGoogle Scholar
  60. 60.
    Muramatsu T (1990) Nutr Res Revers 3:211–228CrossRefGoogle Scholar
  61. 61.
    Nair KS, Halliday D, Matthews DE, Welle SL (1987) Am J Physiol 253:208E-213EGoogle Scholar
  62. 62.
    Nair KS, Welle SL, Halliday D, Campbell RG (1988) J Clin Invest 82:198–205CrossRefGoogle Scholar
  63. 63.
    Nobukuni Y, Mitsubuchi H, Akaboshi I, Indo Y, Endo F, Yashioka A, Matsuda I (1991) J Clin Invest 87:1862–1866CrossRefGoogle Scholar
  64. 64.
    Pawan GLS, Semple SJG (1983) Lancet i:15–17CrossRefGoogle Scholar
  65. 65.
    Pineda O, Torun B, Viteri FE, Arroyave G (1981) In: Bodwell CE, Adkins JS, Hopkins DT (ed) Assessment and in vitro estimation. AVI Publ Co Inc, Westport, Connecticut, pp 29–42Google Scholar
  66. 66.
    Pozefsky T, Felig P, Tobin JD, Soeldner JS, Cahill GF (1969) J Clin Invest 48:2273–2282CrossRefGoogle Scholar
  67. 67.
    Reeds PJ (1990) Proc Nutr Soc (Engl) 49:489–497CrossRefGoogle Scholar
  68. 68.
    Reeds PJ, Harris CI (1981) In: Waterlow JC, Stephen JML (ed) Nitrogen Metabolism in Man. Applied Science Publishers, London and New Jersey, pp 391–408Google Scholar
  69. 69.
    Richardson DP, Wayler AH, Scrimshaw NS, Young VR (1979) Am J Clin Nutr 32:2217–2226Google Scholar
  70. 70.
    Robert J-J, Bier DM, Zhao XH, Matthews DE, Young VR (1982) Metabolism 31:1210–1218CrossRefGoogle Scholar
  71. 71.
    Robert JJ, Cummins JC, Wolfe RR, Young VR (1982) Diabetes 31:203–211CrossRefGoogle Scholar
  72. 72.
    Shangraw RE, Stuart CA, Prince MJ, Peters EJ, Wolfe RR (1988) Am J Physiol 255:548E-558EGoogle Scholar
  73. 73.
    Shaw JHF, Holdaway CM (1988) J Paren Enter Nutr 12:433–440CrossRefGoogle Scholar
  74. 74.
    Sherwin RS, Hendler RG, Felig P (1975) J Clin Invest 55:1382–1390CrossRefGoogle Scholar
  75. 75.
    Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) J Clin Invest 73:412–420CrossRefGoogle Scholar
  76. 76.
    Tessari P, Trevison R, Inchiostro S, Biolo G, Nosandini R, de Kreutzenberg SV, Duner E, Tiengo A, Crepaldi G (1986) Am J Physiol 251:334E-342EGoogle Scholar
  77. 77.
    Tessari P, Nissen SL, Miles JM, Haymond MW (1986) J Clin Invest 77:575–581CrossRefGoogle Scholar
  78. 78.
    Tessari P, Inchiostro S, Biolo G, Trevisan R, Fantin G, Marescotti MC, Iori E, Tiengo A, Grepalde G (1987) J Clin Invest 79:1062–1069CrossRefGoogle Scholar
  79. 79.
    Tessari P, Biolo G, Inchiostro S, Sacca L, Nosadini R, Boscarato T, Trevisan R, de Kreutzenberg SV, Tiento A (1990) Am J Physiol 259:96E-103EGoogle Scholar
  80. 80.
    Thompson GN, Bresson JL, Pacy PJ, Bonnefont JP, Walter JH, Leonard JV, Saudbray JM, Halliday D (1990) Am J Physiol 258:654E-660EGoogle Scholar
  81. 81.
    Thompson GN, Walter JH, Leonard JV, Halliday D (1990) Metabolism 39:799–807CrossRefGoogle Scholar
  82. 82.
    Tomas FM, Munro HN, Young VR (1979) Biochem J 178:139–146CrossRefGoogle Scholar
  83. 83.
    Umpleby AM, Chubb D, Boroujerdi MK, Sonksen PH (1988) Clin Sci 74:41–48CrossRefGoogle Scholar
  84. 84.
    Vazquez JA, Morse EL, Adibi SA (1986) J Clin Invest 76:737–743CrossRefGoogle Scholar
  85. 85.
    Waterlow JC (1984) Quart J Exptl Physiol 69:409–438CrossRefGoogle Scholar
  86. 86.
    Waterlow JC, Millward DJ (1990) In: Wieser W, Gnaiger E (ed) Energy transformation in cells and organisms. Georg Thieme Verlag, Stuttgart, pp 277–282Google Scholar
  87. 87.
    Welle SL, Lilavivathana V, Campbell RG (1980) Metabolism 29:806–809CrossRefGoogle Scholar
  88. 88.
    Welle SL, Lilavivathana V, Campbell RG (1981) Metabolism 30:953–958CrossRefGoogle Scholar
  89. 89.
    Westphal SA, Gannon MC, Nuttall FQ (1990) Am J Clin Nutr 52:267–272Google Scholar
  90. 90.
    White RG, Hume ID, Nolan JV (1988) J Comp Physiol 158:237–246CrossRefGoogle Scholar
  91. 91.
    Wilmore DW, Long JM, Mason MC, Skreen RW, Pruitt BA (1974) Ann Surg 180:653–669CrossRefGoogle Scholar
  92. 92.
    Wolfe RR, Jahoor F, Shaw JHF (1987) J Parent Ent Nutr 11:109–111CrossRefGoogle Scholar
  93. 93.
    Yang RD, Matthews DE, Bier DM, Wen Z-M, Young VR (1986) Am J Physiol 250:39E-46EGoogle Scholar
  94. 94.
    Young JB, Rowe JW, Pallotta JA, Sparrow D, Landsberg L (1980) Metabolism 29:532–539CrossRefGoogle Scholar
  95. 95.
    Young VR, Robert JJ, Motil KJ, Matthews DE, Bier DM (1981) In: Waterlow JC, Stephen JML (eds) Nitrogen Metabolism in Man. Applied Science Publishers Ltd., Barking, Essex, England, pp 417–447Google Scholar
  96. 96.
    Young VR, Bier DM, Pellett PL (1989) Am J Clin Nutr 50:80–92Google Scholar
  97. 97.
    Young VR, Bier DM, Pellett PL (1990) Am J Clin Nutr 51:494–496Google Scholar
  98. 98.
    Young VR, Marchini JS (1990) Am J Clin Nutr 51:270–289Google Scholar
  99. 99.
    Young VR, Yu Y-M, Fukagawa NK (1992) In: Kinney JM (ed) Energy metabolism: Tissue Determinants and Cellular Corollaries. Raven Press, New York, pp 139–160 and 439–466Google Scholar

Copyright information

© Steinkopff-Verlag 1991

Authors and Affiliations

  • V. R. Young
    • 1
    • 2
  1. 1.Laboratory of Human NutritionMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Shriners Burns InstituteBostonUSA

Personalised recommendations