Journal für Ornithologie

, Volume 141, Issue 1, pp 77–84 | Cite as

Variation in extra-pair paternity in the polygynous Great Reed Warbler (Acrocephalus arundinaceus)

  • Bernd Leisler
  • Josef Beier
  • Heidi Staudter
  • Michael Wink


In five years (1992, 1994–97) we measured the frequency of extra-pair paternity (EPP) in a Bavarian population of polygynous Great Reed Warblers (Fränkische Weiher region: 49°40'N, 10°51'E); these data were compared with corresponding findings in Sweden. Progeny from copulations with a male other than the partner (extra-pair young, EPY) were identified by multi-locus DNA fingerprinting with oligonucleotide probes. In 48 broods with 194 nestlings we found 19 EPY in 5 broods. The extra-pair fertilisation (EPF) rate as a percentage of total juveniles (9.8%) is higher, but that with reference to nests (10.4%) is only insignificantly higher than in Sweden.

In contrast to Sweden, neighbour males in our population were never involved in EPF. For two EPF nests the genetic fathers of the EPY were identified; both were unpaired males several years old, with very distant territories (2.4 km away). Both had larger song repertoires than the pair males, and one sang a Great Reed Warbler x Reed Warbler (Acrocephalus scirpaceus) mixed song. In the other cases we were unable to detect the genetic father, either among the neighbouring males or the others tested. Presumably these EPY spring from floater males or rapid mate switching. As in Sweden, EPY were observed in nests of monogamous (2x) as well as polygynous (3x primary females) males. However, in Germany the breeding density was lower and distribution more patchy and the EPF broods were produced earlier (before the median egg-laying date) than those in Sweden. Our comparison supports the hypothesis that the EPF rate is higher in populations with greater genetic variability than in those with less variability. The relatively low EPP rate in this species seems to be due to a close correlation between male and territory characteristics.

Key words

DNA-fingerprinting mating system reproductive success mixed song song repertoire genetic variability 

Variation in der Häufigkeit von Fremdvaterschaften beim polygynen Drosselrohrsänger (Acrocephalus arundinaceus)


In 5 Jahren (1992, 1994–97) bestimmten wir die Häufigkeit von Fremdvaterschaften beim polygynen Drosselrohrsänger in einer bayerischen Population (Fränkisches Weihergebiet 49°40'N, 10°51'E) und verglichen sie mit entsprechenden Ergebnissen aus Schweden. Nachkommen aus Kopulationen außerhalb des Paarbundes (Fremdjunge, EPY) ermittelten wir mit Multi-locus-DNA-Fingerprinting über Oligonucleotidsonden in 48 Bruten mit 194 Nestlingen. Wir fanden 19 EPY in 5 Bruten. Die Rate an Fremdvaterschaften bezogen auf Jungvögel (9,8%) ist signifikant größer als in Schweden, jedoch nicht diejenige bezogen auf Nester (10,4%).

Im Gegensatz zu Schweden waren in unserer Population nie Nachbarmännchen Väter von Fremdjungen. In 2 Nestern konnten die genetischen Väter der EPY gefunden werden. In beiden Fällen handelt es sich um unverpaarte mehrjährige Männchen, die in größerer Entfernung (2,4 km) Reviere hielten. Beide hatten größere Gesangsrepertoires als die Paarmännchen; eines war ein Drosselrohr- x Teichrohrsänger (Acrocephalus scirpaceus)-Mischsänger. In den anderen Fällen konnten wir weder unter den Nachbarmännchen noch unter den anderen überprüften Männchen die genetischen Väter ausfindig machen. Vermutlich sind diese EPY auf „Floater“-Männchen oder „rapid mate switching“ zurückzuführen.

Fremdjunge wurden wie in Schweden sowohl in Nestern von monogam (2x) als auch polygyn verpaarten Männchen (3x Erstweibchen) festgestellt. Im Gegensatz zu den Verhältnissen in Schweden ist die Brutdichte in Deutschland geringer, die Brutverteilung mehr lückenhaft und die EPF-Bruten lagen früher (vor dem Median der Eiablage). Unser Vergleich stützt auch die Hypothese, dass in Populationen mit größerer genetischer Variabilität die Rate von Fremdvaterschaften höher sein sollte als in Populationen mit geringer.

Die enge Korrelation zwischen Männchen- und Reviermerkmalen scheint dafür verantwortlich, dass bei dieser Art die Rate von Fremdvaterschaften nicht sehr hoch, d. h. kleiner als das Mittel von polygynen Arten ist.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albat, T. (1996): Der Einfluß verschiedener ökologischer Faktoren auf Vorkommen, Polygynie und Bruterfolg des Drosselrohrsängers (Acrocephalus arundinaceus L., 1758) im Fränkischen Weihergebiet. Examensarbeït, Universität Kiel.Google Scholar
  2. Andersson, M. (1994): Sexual selection. Princeton.Google Scholar
  3. Barber, C. A. & Robertson R. J. (1999): Floater males engage in extra-pair copulations with resident Tree Swallows. Auk 116: 264–269.Google Scholar
  4. Beier, J. (1981): Untersuchungen an Drossel- und Teichrohrsänger (Acrocephalus arundinaceus, A. scirpaceus): Bestandsentwicklung, Brutbiologie, Ökologie. J. Ornithol. 122: 209–230.Google Scholar
  5. Bensch, S. (1993): Cost, benefits and strategies for females in a polygynous mating system: a study on the great reed warbler. Doct. Diss. Lund University.Google Scholar
  6. Bensch, S., Hasselquist, D. & von Schantz, T. (1994): Genetic similarity between parents predicts hatching failure — nonincestuous inbreeding in the great reed warbler. Evolution 48: 317–326.Google Scholar
  7. Bensch, S. & Hasselquist D. (1999): Phylogeographic population structure of great reed warblers: an analysis of mtDNA control region sequences. Biol. J. Linnean Soc. 66: 171–185.Google Scholar
  8. Birkhead, T. R. (1996): Sperm Competition: Evolution and Mechanisms. Current Topics in Developmental Biology 33: 103–157.Google Scholar
  9. Birkhead T. R. & Møller A. P. (1992): Sperm competition in birds: Evolutionary causes and consequences. London.Google Scholar
  10. Birkhead, T. R. & Møller A. P. (1996): Monogamy and sperm competition in birds. In: J. M. Black (Ed.): Partnerships in Birds: 223–243. London.Google Scholar
  11. Bruford, M. W., Hanotte, O., Brookfield, J. F. Y. & Burke T. (1992). Single-locus and multilocus DNA fingerprinting. In: Hoelzel, A. R. (Ed.): Molecular genetic analysis of populations: 225–269. Oxford.Google Scholar
  12. Brün, J., Winkel, W., Epplen, J. T. & Lubjuhn T. (1996): Elternschaftsnachweise bei TrauerschnäppernFidecula hypoleuca am Westrand ihres mitteleuropäischen Verbreitungsareals. J. Ornithol. 137: 435–446.Google Scholar
  13. Catchpole, C. K., Leisler, B. & Winkler, H. (1985): Polygyny in the Great Reed Warbler,Acrocephalus arundinaceus: a possible case of deception. Behav. Ecol. Sociobiol. 16: 285–291.Google Scholar
  14. Catchpole, C. K., Leisler, B. & Dittami, J. (1986): Sexual differences in the responses of captive Great Reed Warblers (Acrocephalus arundinaceus) to variation in song structure and repertoire size. Ethology 73: 69–77.Google Scholar
  15. Davies, N. B. (1992): Dunnock behaviour and social evolution. Oxford.Google Scholar
  16. Dyrcz, A. (1986): Factors affecting facultative polygyny and breeding results in the Great Reed Warbler (Acrocephalus arundinaceus). J. Ornithol. 127: 447–461.Google Scholar
  17. Freeman-Gallant, C. R. (1997): Extra-pair paternity in monogamous and polygynous savanna sparrows,Passerculus sandwichensis. Anim. Behav. 53: 397–404.Google Scholar
  18. Gowaty, P. A. (1999): Extra-pair paternity and parental care: Differential male fitness via exploitation of variation among females. In: Adams, N. J. & Slotow, R. H. (Eds.): Proc. 22 Int. Ornithol. Congr., Durban: 2639–2656. Johannesburg.Google Scholar
  19. Gray, E. M. (1997): Female red-winged blackbirds accrue material benefits from copulating with extra-pair mates. Anim. Behav. 53: 625–639.Google Scholar
  20. Hasselquist, D. (1994): Male attractiveness, mating tactics and realized fitness in the polygynous Great Reed Warbler. Doct. Diss., Lund University.Google Scholar
  21. Hasselquist, D. (1998): Polygyny in great reed warblers: a long-term study of factors contributing to male fitness. Ecology 79: 2376–2390.Google Scholar
  22. Hasselquist, D., Bensch, S. & von Schantz, T. (1995): Low frequency of extrapair paternity in the polygynous great reed warbler,Acrocephalus arundinaceus. Behav. Ecol. 6: 27–38.Google Scholar
  23. Hasselquist, D., Bensch, S. & von Schantz, T. (1996): Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warblers. Nature 381: 229–232.Google Scholar
  24. Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985): Individual specific “fingerprints” of human DNA. Nature 316: 76–79.Google Scholar
  25. Kempenaers, B. (1997): Does reproductive synchrony limit male opportunities or enhance female choice for extra-pair paternity? Behaviour 134: 551–562.Google Scholar
  26. Kempenaers, B., Verheyen, G. R. & Dhondt, A. A. (1997): Extra-pair paternity in the blue tit (Parus caeruleus) — female choice, male characteristics, and offspring quality. Behav. Ecol. Sociobiol. 8: 481–492.Google Scholar
  27. Kirkpatrick, M., Price, T. & Arnold, S. J. (1990): The Darwin-Fisher theory of sexual selection in monogamous birds. Evolution 44: 180–193.Google Scholar
  28. Leisler, B. (1998): Soziale Paarungssysteme und genetische Elternschaftsnachweise bei RohrsängernAcrocephalus. Ornithol. Mitt. 50: 352–357.Google Scholar
  29. Leisler, B., Beier, J., Heine, G. & Siebenrock, K.-H. (1995): Age and other factors influencing mating status of German great reed warblers (Acrocephalus arundinaceus). Jap. J. Ornithol. 44: 169–180.Google Scholar
  30. Mock, D. W. & Fujioka, M. (1990): Monogamy and long-term pairbonding in vertebrates. Trends Ecol. Evol. 5: 39–43.Google Scholar
  31. Møller, A. P. (1990): Changes in the size of avian breeding territories in relation to the nesting cycle. Anim. Behav. 40: 1070–1079.Google Scholar
  32. Møller, A. P. & Ninni, P. (1998): Sperm competition and sexual selection: a meta-analysis of paternity studies in birds. Behav. Ecol. Sociobiol. 43: 345–385.Google Scholar
  33. Perreault, S., Lemon, R. E. & Kuhnlein, U. (1997): Patterns and correlates of extrapair paternity in American redstarts (Setophaga ruticilla). Behavioral Ecology 8: 612–621.Google Scholar
  34. Petrie, M. & Kempenaers, B. (1998): Extra-pair paternity in birds: explaining variation between species and populations. Trends Ecol. Evol. 13: 52–58.Google Scholar
  35. Petrie, M., Doums, C. & Møller, A. P. (1998): The degree of extra-pair paternity increases with genetic variability. Proc. Nat. Acad. Sci. USA 95: 9390–9395.Google Scholar
  36. Pinxten, R., Hanotte, O., Eens, M., Verheyen, R. F., Dhondt A. A. & Burke T. (1993): Extra-pair paternity and intraspecific brood parasitism in the European starlingSturnus vulgaris. Evidence from DNA fingerprinting. Anim. Behav. 45: 795–809.Google Scholar
  37. Reyer, U. (1994): “Do-si-do your Partner”: Report on the Annual Conference of the BOU. Ibis 136: 110–112.Google Scholar
  38. Rhijn van, J. G. (1991): Mate guarding as a key factor in the evolution of parental care in birds. Anim. Behav. 41: 963–970.Google Scholar
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York.Google Scholar
  40. Slagsvold, T. & Lifjeld, J. T. (1997): Incomplete female knowledge of male quality may explain variation in extra-pair paternity in birds. Behaviour 134: 353–371.Google Scholar
  41. Stockley, P. (1997): Sexual conflict resulting from adaptations to sperm competition. Trends Ecol. Evol. 12: 154–159.Google Scholar
  42. Stutchbury, B. J. & Morton, E. S. (1995): The effect of breeding synchrony on extra-pair mating systems in songbirds. Behaviour 132: 676–690.Google Scholar
  43. Swatschek, I., Ristow, D. & Wink, M. (1994): Mate fidelity and parentage in Cory's shearwaterCalonectris diomedea — field studies and DNA finger-printing. Mol. Ecol. 3: 259–262.Google Scholar
  44. Westneat, D. F. & Sherman, P. W. (1997): Density and extra-pair fertilisations in birds — a comparative analysis. Behav. Ecol. Sociobiol. 41: 205–215.Google Scholar
  45. Westneat, D. F., Sherman, P. W. & Morton, M. L. (1990): The ecology and evolution of extra-pair copulations in birds. Current Orn. 7: 331–369.Google Scholar
  46. Yezerinac, S. M. & Weatherhead, P. J. (1997): Extrapair mating, male plumage coloration and sexual selection in yellow warblers (Dendroica petechia). Proc. Royal Soc. London, Series B — Biological Sciences 264: 527–532.Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft/Blackwell Wissenschafts-Verlag 2000

Authors and Affiliations

  • Bernd Leisler
    • 1
  • Josef Beier
    • 2
  • Heidi Staudter
    • 3
  • Michael Wink
    • 3
  1. 1.Forschungsstelle für Ornithologie der Max-Planck-Gesellschaft, Andechs und Radolfzell, Vogelwarte RadolfzellRadolfzell
  2. 2.Ebermannstadt
  3. 3.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelberg

Personalised recommendations