Skip to main content
Log in

Thermal and energetic consequences of nest location and breeding times in Water Pipits (Anthus spinoletta)

Thermische und energetische Konsequenzen von Brutplätzen und Brutzeiten bei Wasserpiepern (Anthus spinoletta)

  • Published:
Journal für Ornithologie Aims and scope Submit manuscript

Summary

The thermal environment has pronounced effects on the energy costs of thermoregulation and affects an animal's allocation of energy to self-maintenance and parental care. Consequently, the selection of reproductive periods, breeding habitats and nest-sites with a favourable microclimate can be advantageous, especially for birds breeding in harsh environments. In this study on Alpine Water Pipits (Anthus spinoletta), we evaluate the importance of spatial and temporal factors on thermoregulatory costs by combining laboratory measurements of metabolic rates under various temperatures with standard operative temperatures (Tes) recorded in the field in different microhabitats. Using these measurements we estimate the thermal and energetic consequences of nest locality and timing of reproduction. Our results show: (1) In the morning, Tes values were much higher on the east-north-east (ENE) slope of a valley than on the west-south-west (WSW) slope; in the afternoon this pattern was reversed. As a consequence, energy costs (Ehour) for thermoregulation on the ENE slope were up to 0.6 RMR (resting metabolic rate at night) lower than on the WSW slope during morning hours and about 0.8 RMR higher during afternoon hours. (2) During the incubation and nestling phases of first and second broods, total energy expenditure for thermoregulation in the daytime (Edaytime) was 0.2–0.3 RMR higher on the ENE slope than on the WSW slope. (3) Within slopes, Edaytime was lower during second broods than during first broods, with differences of 0.06–0.07 RMR during incubation and of 0.32 RMR during nestling care. These differences correspond to the flying costs of females incubating eggs (0.09 RMR) and rearing nestlings (0.25 RMR). We conclude that nest placement in relation to microclimate can improve the female's energy budget, both in terms of the total daily expenditure and its diurnal pattern. From thermal considerations alone, delaying breeding into mid-summer would be advantageous, but this advantage is probably outweighed by the reduced chances for second and replacement clutches and by the necessity to complete moult before migration.

Zusammenfassung

Die Umgebungstemperatur beeinflusst den Energieaufwand für die Thermoregulation und bestimmt somit, wie viel Energie ein Tier für die Selbsterhaltung benötigt und wie viel es für Brutpflege aufwenden kann. Daher ist es vorteilhaft, für die Fortpflanzung Zeiten und Orte mit besonders günstigen mikroklimatischen Bedingungen zu wählen. Das gilt insbesondere für Vögel, die in unwirtlichen Biotopen wie z. B. alpinen Regionen brüten. Wir untersuchten den Einfluss von Brutzeit und -ort auf die energetischen Kosten der Thermoregulation am Beispiel einer Population des Wasserpiepers (Anthus spinoletta) im Dischmatal bei Davos (Schweiz). Dazu verknüpften wir drei verschiedene Datensätze: a) Ruhestoffwechsel (RMR), gemessen an gefangenen Vögeln unter verschiedenen Temperaturen, b) Umgebungs- und Nesttemperaturen im Freiland während der Brutzeit und c) standardisierte operative Temperaturen (Tes), ermittelt mit Kupfervögeln in verschiedenen Mikrohabitaten.

Die Ergebnisse zeigen: (1) In den Morgenstunden sind Tes-Werte am Ost-Nord-Ost-Hang (ONO) deutlich höher als am West-Süd-West-Hang (WSW); am Nachmittag sind die Verhältnisse umgekehrt. Als Folge davon sind die Energiekosten (Ehour) der Thermoregulation am ONO-Hang in den Morgenstunden bis zu 0.6 RMR niedriger und nachmittags ca. 0.8 RMR höher als am WSW-Hang. (2) In der Bebrütungs- und Nestlingsphase von Erst-und Zweitbruten war der gesamte Energieaufwand für Thermoregulation während der Tagesstunden (Edaytime) am ONO-Hang 0.2–0.3 RMR höher als am WSW-Hang. (3) Innerhalb jedes Hanges war Edaytime bei Zweitbruten niedriger als bei Erstbruten: 0.06–0.07 RMR während der Bebrütung der Eier und 0.32 RMR während der Nestlingsphase. Diese Größenordnungen entsprechen den Flugkosten von Weibchen während der Bebrütungszeit (0.09 RMR) bzw. der Jungenaufzucht (0.25 RMR).

Unsere Ergebnisse belegen, dass die Wahl von klimatisch günstigen Habitaten die Energiebilanz von Brutvögeln verbessern kann, sowohl in Hinblick auf den täglichen Gesamtaufwand als auch bezüglich der Verteilung des Energieverbrauchs über den Tag. Aus thermoregulatorischen Gründen wäre auch eine zeitliche Verlagerung des Brutgeschäfts in die Sommermonate (Juli, August) vorteilhaft. Das würde jedoch die Möglichkeiten für Ersatz-und Zweitbruten verringern und die Zeit für die Mauser vor dem Herbstzug verkürzen. Da in unserem Untersuchungsgebiet diese Faktoren für eine erfolgreiche Fortpflanzung eine größere Bedeutung haben als der Energieaufwand für die Thermoregulation, ist der frühe — energetisch 6–32 % teurere — Brutbeginn der Vögel sinnvoll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aschoff, J. & Pohl, H. (1970): Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergrösse. J. Ornithol. 111: 38–47.

    Article  Google Scholar 

  • Austin, G. T. (1976): Behavioral adaptions of the Verdin to the desert. Auk 93: 245–262.

    Google Scholar 

  • Bakken, G. S. (1990): Estimating the effect of wind on avian metabolic rate with standard operative temperature. Auk 107: 587–594.

    Google Scholar 

  • Bakken, G. S. (1992): Measurement and application of operative and standard temperatures in ecology. Amer. Zool. 32: 194–216.

    Article  Google Scholar 

  • Bakken, G. S. & Gates, D. M. (1975): Heat-transfer analysis of animals: some implications for field ecology, physiology and evolution. In: Gates, D. M. & Schmerl, R. B. (Eds.): Perspectives of Biophysical Ecology: 255–290. Berlin.

  • Bakken, G. S., Santee, W. R. & Erskine, D. J. (1985): Operative and standard operative temperature: tools for thermal energetics studies. Amer. Zool. 25: 933–943.

    Article  Google Scholar 

  • Biedenweg, D. W. (1983): Time and energy budgets of the Mockingbird (Mimus polyglottos) during the breeding season. Auk 100: 149–160.

    Article  Google Scholar 

  • Blaxter, K. (1989): Energy Metabolism in Animals and Man. Cambridge.

  • Bollmann, K. (1996): The mating systems of the alpine Water PipitAnthus spinoletta in a variable environment: ecological, demographic and fitness aspects. Ph.D. thesis, University of Zürich, Switzerland

    Google Scholar 

  • Bollmann, K., Reyer, H.-U. & Brodmann, P. (1997): Territory quality and reproductive success: Can water pipitsAnthus spinoletta assess the relationship reliably? Ardea 85: 83–98.

    Google Scholar 

  • Brodman, P. A. & Reyer, H.-U. (1999): Nestling provisioning in water pipits (Anthus spinoletta): do parents go for specific nutrients of profitable prey? Oecologia 120: 506–514.

    Article  Google Scholar 

  • Brodmann, P. A., Reyer, H.-U., Bollmann, K., Schläpfer, A. R. & Rauter, C. (1977a): The importance of food quantity and quality for reproductive performance in alpine water pipits. Oecologia 109: 200–208.

    Article  Google Scholar 

  • Brodmann, P. A., Reyer, H.-U. & Baer, B. (1997b): The relative importance of habitat structure and prey characteristics for the foraging success of water pipits (Anthus spinoletta). Ethology 103: 222–235.

    Article  Google Scholar 

  • Bryant, D. M. & Tatner, P. (1990): Intraspecies variation in avian energy expenditure: correlates and constraints. Ibis 133: 236–245.

    Article  Google Scholar 

  • Calder, W. A. (1973): Microhabitat selection during nesting of hummingbirds in the Rocky Mountains. Ecology 54: 127–134.

    Article  Google Scholar 

  • Carlson, A. & Moreno, J. (1992): Costs of short flights in the Willow Tit measured with doubly-labeled water. Auk 109: 389–393.

    Article  Google Scholar 

  • Clark, G. A. Jr. (1979): Body weights of birds: A review. Condor 81: 193–202.

    Article  Google Scholar 

  • Clark, L. (1987): Thermal constraints on foraging in adult European Starlings. Oecologia 71: 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Drent, R. & Daan, S. (1980): The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225–252.

    Google Scholar 

  • Dijkstra, C., Bult, A., Bijlsma, S., Daan, S., Meijer, T. & Zijlstra, M. (1990): Brood size manipulations in the Kestrel (Falco tinnunculus): effects on offspring and parent survival. J. Anim. Ecol. 59: 269–285.

    Article  Google Scholar 

  • Du Plessis, M. A., Weathers, W. W. & Koenig, W. D. (1994): Energetic benefits of communal roosting by Acorn Woodpeckers during the nonbreeding season. Condor 96: 631–637.

    Article  Google Scholar 

  • Du Plessis, M. A., Williams, J. B. (1994): Communal cavitiy roosting in cooperatively breeding Green Woodhoopoes: consequences for energy expenditure and the seasonal pattern of mortality. Auk 111: 292–299.

    Article  Google Scholar 

  • Ettinger, A. O. & King, J. R. (1980): Time and energy budgets of the Willow Flycatcher (Empidonax traillii) during the breeding season. Auk 97: 533–546.

    Google Scholar 

  • Finch, D. M. (1984): Parental expenditure of time and energy in the Abert's Towhee (Pipilo aberti). Auk 101: 473–486.

    Article  Google Scholar 

  • Franz, H. (1979): Ökologie der Hochgebirge. Stuttgart.

  • Frey-Roos, F., Brodmann, P. A. & Reyer, H.-U. (1995): Relationships between food resources, foraging patterns and reproductive success in the water pipit,Anthus sp. spinoletta. Behav. Ecol. 6: 287–295.

    Article  Google Scholar 

  • Glutz von Blotzheim, U. N. & Bauer, K. M. (1985): Handbuch der Vögel Mitteleuropas. Vol. 10/II. Wiesbaden.

  • Haftorn, S. (1989): Seasonal and diurnal body weight variations in Titmice, based on analyses of individual birds. Wilson Bull. 10: 217–235.

    Google Scholar 

  • Johnson, S. R. & Cowan, I. M. (1974): Thermal adaption as a factor affecting colonizing success of introduced Sturnidae (Aves) in North Carolina. Can. J. Zool. 52: 1559–1576.

    Article  CAS  PubMed  Google Scholar 

  • Lehikoinen, E. (1987): Seasonality of the daily weight cycle in wintering passerines and its consequences. Ornis Scand. 18: 216–226.

    Article  Google Scholar 

  • Lifson, N. & McLintock, R. (1966): Theory and use of turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12: 266–325.

    Article  Google Scholar 

  • Lyon, B. E. & Montgomerie, R. D. (1985): Incubation feeding in Snow Buntings: female manipulation or indirect male parental care? Behav. Ecol. Sociobiol. 17: 279–284.

    Article  Google Scholar 

  • Marschall, U. & Prinzinger, R. (1991): Vergleichende Ökophysiologie von fünf Prachtfinkenarten (Estrildidae). J. Ornithol. 132: 319–324.

    Article  Google Scholar 

  • Martins, T. L. F. & Wright, J. (1993): Cost of reproduction and allocation of food between parent and young in the Swift (Apus apus). Behav. Ecol. 4: 213–223.

    Article  Google Scholar 

  • Masman, D. S. (1986): The annual cycle of the Kestrel,Falco tinnunculus: a study in behavioural energetics. Ph. D. thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Masman, D. S., Daan, S. & Belthuis, H. J. A. (1988): Ecological energetics of the kestrel. Daily energy expenditure, throughout the year based on time-energy budget, food intake and doubly labelled-water. Ardea 76: 64–81.

    Google Scholar 

  • Moreno, J. (1989): Energetic constraints on uniparental incubation in the WheatearOenanthe oenanthe (L.). Ardea 77: 107–115.

    Google Scholar 

  • Moser, H. R., Keller, M. & Kunz, S. (1986): Klima und Luftbelastung. In: Wildi, O. & Ehwald, K. (Eds.): Der Naturraum und dessen Nutzung im alpinen Tourismusgebiet Davos: Ergebnisse des MAB-Projektes Davos: 107–138. Eidg. Anst. forstl. Versuchswes., Birmensdorf.

    Google Scholar 

  • Nur, N. (1984): The consequences of brood size for breeding Blue Tits. I. Adult survival, weight change and the cost of reproduction. J. Anim. Ecol. 53: 479–496.

    Article  Google Scholar 

  • Partridge, L. (1989): Lifetime reproductive success and life-history evolution. In: Newton, I. (Ed.): Life time reproduction in birds: 421–440. London.

  • Pettifor, R. A. (1993): Brood-manipulation experiments. I. The number of offspring surviving per nest in Blue Tits (Parus caeruleus). J. Anim. Ecol. 62: 131–144.

    Article  Google Scholar 

  • Piersma, T. & Morrison, R. I. G. (1994): Energy expenditure and water turnover of incubating ruddy turnstones: High costs under high arctic climatic conditions. Auk 111: 366–376.

    Article  Google Scholar 

  • Piersma, T., Bruinzeel, L., Drent, R., Kersten, M., Van der Meer, J. & Wiersma, P. (1996): Variability in basal metabolic rate of a long-distance migrant shorebird (Red Knot,Calidris canutus) reflects shifts in organ sizes. Physiol. Zool. 69: 191–217.

    Article  Google Scholar 

  • Prinzinger, R. (1988): Energy metabolism, body temperature and breathing parameters in nontorpid blue-naped mousebirdsUrocolius macrourus. J. Comp. Physiol. B 157: 801–806.

    Article  Google Scholar 

  • Rauter, C. M. (1996): Environmental factors, parental care and reproductive performance in the water pipit (Anthus spinoletta). Ph. D. thesis, University of Zürich, Switzerland.

    Google Scholar 

  • Rauter, C. & Reyer H.-U. (1997) Incubation pattern and foraging effort in the female Water PipitAnthus spinoletta. Ibis 139: 441–446.

    Article  Google Scholar 

  • Rauter, C., Brodmann, P. A. & Reyer, H.-U. (2000): Provisioning behaviour in relation to food availability and nestling food demand in the water pipit (Anthus spinoletta). Ardea 88: 81–90.

    Google Scholar 

  • Rehsteiner, U., Geisser, H. & Reyer, H.-U. (1998): Singing and mating success in water pipits: one specific song element makes all the difference. Anim. Behav. 55: 1471–1481.

    Article  CAS  PubMed  Google Scholar 

  • Reyer, H.-U, Bolmann, K, Schläpfer, A. R., Schymainda, A & Klecack, G. (1997) Ecological determinants of extra-pair copulations and egg dumping in alpine water pipits. Behav. Ecol. 8: 534–543.

    Article  Google Scholar 

  • Rogers, C. M., Rogers, C. J. (1990): Seasonal variation in daily mass amplitude and minimum body mass: a test of recent model. Ornis Scand. 21: 105–114.

    Article  Google Scholar 

  • SAS Institute Inc. (1985): SAS User's Guide: Statistics, version 5. SAS Institute Inc., Cary, N. C.

    Google Scholar 

  • Schleucher, E., Prinzinger, R., Withers, P. C. (1991): Life in extreme environments: Investigations on the ecophysiology of a desert bird, the Australian Diamond DoveGeopelia cuneata, Latham. Oecologia 88: 72–76.

    Article  PubMed  Google Scholar 

  • Scott, I., Mitchell, P. I. & Evans, P. R. (1996): How does variation in body composition affect the basal metabolic rate in birds? Functional Ecol. 10: 307–313.

    Article  Google Scholar 

  • Smith, H. G., Kalländer, H., Hultman, J. & Sanzén, B. (1989): Female nutritional state affects the rate of male incubation feeding in the Pied FlycatcherFicedula hypoleuca. Behav. Ecol. Sociobiol. 24: 417–420.

    Article  Google Scholar 

  • Tatner, P. & Bryant, D. M. (1993): Interspecific variation in daily energy expenditure during avian incubation. J. Zool. (London) 231: 215–232.

    Article  Google Scholar 

  • Walsberg, G. E. (1981): Nest-site selection and the radiative environment of the Warbling Vireo. Condor 83: 86–88.

    Article  Google Scholar 

  • Walsberg, G. E. (1990): Communal roosting in a very small bird: consequences for the thermal and respiratory gas environments. Condor 92: 795–798.

    Article  Google Scholar 

  • Walsberg, G. E. (1993): Thermal consequences of diurnal microhabitat selection in a small bird. Ornis Scand. 24: 174–182.

    Article  Google Scholar 

  • Walsberg, G. E. & King, J. R. (1978): The heat budget of incubating Mountain White-crowned Sparrows (Zonotrichia leucophrys oriantha) in Oregon. Physiol. Zool. 51: 92–103.

    Article  Google Scholar 

  • Walsberg, G. E. & Wolf, B. O. (1996): An appraisal of operative temperature mounts as tools for studies of ecological energetics. Physiol. Zool. 69: 658–681.

    Article  Google Scholar 

  • Weathers, W. W. (1979): Climatic adaptation in avian standard metabolic rate. Oecologia 42: 81–89.

    Article  PubMed  Google Scholar 

  • Weathers, W. W. (1997): Energetics and thermoregulation by small passerines of the humid, lowland tropic. Auk 114: 341–353.

    Article  Google Scholar 

  • Weathers, W. W. & Greene, E. (1998): Thermoregulatory responses of bridled and juniper titmice to high temperature. Condor 100: 365–372.

    Article  Google Scholar 

  • Weathers, W. W., Paton, D. C. & Seymour, R. S. (1996): Field metabolic rate and water flux of nectivorous honey-eaters. Austr. J. Zool. 44: 445–460.

    Article  Google Scholar 

  • Weathers, W. W. & Sullivan, K. A. (1989): Juvenile foraging proficiency, parental effort, and avian reproductive success. Ecol. Monographs 59: 223–246.

    Article  Google Scholar 

  • Webb, D. R. (1987): Thermal tolerance of avian embryos: a review. Condor 89: 874–898.

    Article  Google Scholar 

  • Webb, D. R. & King, J. R. (1983): An analysis of the heat budgets of the eggs and nest of the White-crowned Sparrow,Zonotrichia leucophrys, in relation to parental attentiveness. Physiol. Zool. 56: 493–505

    Article  Google Scholar 

  • Webster, M. D. & Weathers, W. W. (1988): Effect of wind and air temperature on metabolic rate in verdinsAuriparus flaviceps. Physiol. Zool. 61: 543–554.

    Article  Google Scholar 

  • Webster, M. D. & Weathers, W. W. (1990): Heat produced as a byproduct of foraging activity contributes to thermoregulation by verdinsAuriparus flaviceps. Physiol. Zool. 63: 777–794.

    Article  Google Scholar 

  • Whittow, G. C. (1986): Regulation of body temperature. In: Sturkie, P. D. (Ed.): Avian Physiology, 4th edition. Berlin.

  • Williams, J. B. (1993): Energetics of incubation in free-living Orange-breasted Sunbirds in South Africa. Condor 95: 115–126.

    Article  Google Scholar 

  • With, K. A. & Webb, D. R. (1993): Microclimate of ground nests: the relative importance of radiative cover and wind breaks for three grassland species. Condor 95: 401–413.

    Article  Google Scholar 

  • Wright, J. & Cuthill, I. (1989): Manipulation of sex differences in parental care. Behav. Ecol. Sociobiol. 25: 171–181.

    Article  Google Scholar 

  • Wolf, B. O. & Walsberg, G. E. (1996): Thermal effects of radiation and wind on a small bird and implications for microsite selection. Ecology 77: 2228–2236.

    Article  Google Scholar 

  • Wolf, B. O., Wooden, K. M. & Walsberg, G. E. (1996): The use of thermal refugia by two small desert birds. Condor 98: 424–428.

    Article  Google Scholar 

  • Zann, R. & Rossetto, M. (1991): Zebra Finch incubation: brood patch, egg temperature and thermal properties of the nest. Emu 91: 107–120.

    Article  Google Scholar 

  • Zerba, E. & Morton, M. L. (1983): Dynamics of incubation in Mountain White-crowned Sparrows. Condor 85: 1–11.

    Article  Google Scholar 

  • Zerba, E. & Walsberg, G. E. (1992): Exercise-generated heat contributes to thermoregulation by Gambel's quail in the cold. J. Exp. Biol. 171: 409–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Ulrich Reyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauter, C., Reyer, HU. Thermal and energetic consequences of nest location and breeding times in Water Pipits (Anthus spinoletta). J Ornithol 141, 391–407 (2000). https://doi.org/10.1007/BF01651569

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01651569

Key words