Skip to main content
Log in

Comparing interspecific and intraspecific allometry in the Anatidae

Vergleich inter- und intraspezifisher Allometrien bei Anatiden

  • Published:
Journal für Ornithologie Aims and scope Submit manuscript

Summary

Interspecific scaling relationships (e.g. of limb size with body mass) in vertebrates are usually assumed to be functional (e.g. biomechanical) attributes. In this paper on the Anatidae, we study the scaling of wing length and tarsus length with body mass, relationships that can be expected to have biomechanical significance. At an interspecific level, both wing length and tarsus are positively allometric, a finding consistent with results from previous comparative avian studies. These trends remained significant in regressions controlling for the effects of phylogeny, but interspecific slopes were less steep within tribes than in the whole family (a taxon-level effect). We are not aware of any biomechanical resasons that explain these patterns satisfactorily. Intraspecific (static) allometries in Green-winged Teal (Anas crecca) and Marbled Teal (Marmaronetta angustirostris) are different: wing length is negatively allometric and tarsus is isometric. These anomalies suggest that interspecific and intraspecific scaling relationships do not share common causes. Our results bring into question the significance of interspecific allometries in vertebrate morphology, which may to some extent be non-functional by-products of morphological optimisation processes within species and ecological differences between them.

Zusammenfassung

Bei Vertebraten werden auf dem interspezifischem Niveau Größenbeziehungen (z. B. Gliedmaßenlänge mit Körpergewicht) üblicherweise funktional (z. B. bio-mechanisch) erklärt. In der vorliegende Studie untersuchen wir die Größenbeziehungen von Flügel- und Tarsuslänge mit der Körpermasse bei Anatiden. Es ist zu erwarten, daß diese Beziehungen biomechanische Bedeutung haben. Auf dem interspefischen Niveau (morphometrische Daten von 42 westpaläarktischen Arten wurden untersucht) sind sowohl Flügellänge als auch Tarsuslänge positiv allometrisch, d. h. länger mit zunehmender Masse. Dieses Ergebnis stimmt mit früheren, vergleichenden Studien an Vögeln überein. Diese Trends waren auch in Regressionsanalysen signifikant, in denen auf die Effekte der Phylogenie kontrolliert wurde. Allerdings, waren die interspezifischen Steigungen innerhalb der Triben geringer als in ganzen Familien (Effekt des taxonomischen Niveaus). Für diese Muster haben wir keine befriedigende biomechanische Erklärung. Intraspezifische (statische) Allometrien in einjährigen Krickenten (Anas crecca) und Marmelenten (Marmaronetta angustirostris) unterscheiden sich: die Flügellänge ist hier negativ allometrisch (d. h. relativ kürzer bei steigender Masse), die Tarsuslänge ist isometrisch. Diese Anomalien weisen darauf hin, dass inter-und intraspezifischen Größenbeziehungen keine gemeinsame Erklärung zugrunde liegen. Unsere Ergebnisse stellen die Bedeutung von interspezifischen Allometrien in der Morphologie von Vertebraten in Frage. Sie könnten zum Teil nichtfunktionelle Nebenprodukte von morphologischer Spezialisierung innerhalb von Arten, aber auch von ökologischen Unterschieden zwischen Arten sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batt, B. D. J, Afton, A. D., Anderson, M. G., Ankney, C. D., Johnson, D. H., Kadlec, J. A. & Krapu, G. L., Eds., (1992): Ecology and Management of Breeding Waterfowl. Minneapolis.

  • Balmford, A., Jones, I. L. & Thomas, A. L. R. (1994): How to compensate for costly sexually selected tails: the origin of sexually dimorphic wings in long-tailed birds. Evolution 48: 1062–1070.

    Article  PubMed  Google Scholar 

  • Bertram, J. E. A. & Biewener, A. A. (1992): Allometry and curvature in the long bones of quadrupedal mammals. J. Zool, Lond. 226: 455–467.

    Article  Google Scholar 

  • Björklund, M. (1994): Allometric relations in three species of finches (Aves: Fringillidae). J. Zool, Lond. 233: 657–668.

    Article  Google Scholar 

  • Boag, P. T. (1984): Growth and allometry of external morphology in Darwin's finches (Geospiza) on Isla Daphne Major, Galapagos. J. Zool, Lond. 204: 413–441.

    Article  Google Scholar 

  • Brown, M. E. (1996): Assessing body condition in birds. In: V. Nolan & E. D. Ketterson (Eds.): Current Ornithology. Vol 13: 67–135. New York.

  • Calder, W. A. (1984): Size, function, and life history. Cambridge, Massachusetts.

  • Castro, G. & Myers, J. P. (1990): Validity of predictive equations for total body fat in sanderlings from different nonbreeding areas. Condor 92: 205–209.

    Article  Google Scholar 

  • Cramp, S. & Simmons, K. E. L., Eds., (1977): The birds of the western Palearctic, vol. 1. Oxford.

  • Crawley, M. J. (1993): GLIM for ecologists. Oxford.

  • Demes, B. & Jungers, W. L. (1993): Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates. J. Hum. Evol. 25: 57–74.

    Article  Google Scholar 

  • Feldman, H. A. (1995): On the allometric mass exponent, when it exists. J. Theor. Biol. 172: 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985): Phylogenies and the comparative method. Am. Nat. 125: 1–15.

    Article  Google Scholar 

  • Fox, A. D., King, R. & Watkin, J. (1992): Seasonal variation in weight, body measurements and condition of free-living Teal. Bird Study 39: 53–62.

    Article  Google Scholar 

  • Garland, T., Jr., Harvey, P. H., & Ives, A. R., (1992): Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18–32.

    Article  Google Scholar 

  • Gosler, A. G., Greenwood, J. J. D., Baker, J. K. & Davidson, N. C. (1998): The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45: 92–103.

    Article  Google Scholar 

  • Grafen, A. (1989): The phylogenetic regression. Phil. Trans. Roy. Soc. B 326: 119–156.

    CAS  Google Scholar 

  • Green, A. J. (2000): Sexual dimorphism in morphometry and allometry in the Marbled TealMarmaronetta angustirostris. J. Avian Biol. 31: 345–350.

    Article  Google Scholar 

  • Green, A. J. & El Hamzaoui, M. (2000): Diurnal behaviour and habitat use of non-breeding Marbled TealMarmaronetta angustirostris. Can. J. Zool. 78:

  • Harvey, P. H. & Krebs, J. R. (1990): Comparing brains. Science 249: 140–146.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, P. H. & Pagel, M. D. (1991): The comparative method in evolutionary biology. Oxford.

  • Jolicoeur, P. (1990): Bivariate allometry: interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship. J. Theor. Biol., 144, 275–285.

    Article  Google Scholar 

  • Kehoe, F. P. & Thomas, V. G. (1987): A comparison of interspecific differences in the morphology of external and internal feeding apparatus among North American Anatidae. Can. J. Zool. 65: 1818–1822.

    Article  Google Scholar 

  • Klingenberg, C. P. & Zimmermann, M. (1992): Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of water striders. Am. Nat. 140: 601–620.

    Article  Google Scholar 

  • Kooloos, J. G. M., Kraaijeveld, A. R., Langenbach, G. E. J. & Zweers, G. A. (1989): Comparative mechanics of filter feeding inAnas platyrhynchos, Anas clypeata andAythya fuligula (Aves, Anseriformes). Zoomorphology 108: 269–290.

    Article  Google Scholar 

  • Kozlowski, J. & Weiner, J. (1997): Interspecific allometries are by-products of body size optimization. Am. Nat. 149: 352–380.

    Article  Google Scholar 

  • LaBarbera, M. (1989): Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20: 97–117.

    Article  Google Scholar 

  • Legendre, P. & Legendre, L. (1998): Numerical ecology. Amsterdam.

  • Livezey, B. C. (1986): A phylogenetic analysis of recent Anseriform genera using morphological characters. Auk 103: 737–754.

    Article  Google Scholar 

  • Livezey, B. C. (1989a): Phylogenetic relationships and incipient flightlessness of the extinct Auckland Islands Merganser. Wilson Bull. 101: 410–435.

    Google Scholar 

  • Livezey, B. C. (1989b): Flightlessness in grebes (Aves, podicipedidae): its independent evolution in three genera. Evolution 43: 29–54.

    Article  PubMed  Google Scholar 

  • Livezey, B. C. (1990): Evolutionary morphology of flightlessness in the Auckland Islands teal. Condor 92: 639–673.

    Article  Google Scholar 

  • Livezey, B. C. (1991): A phylogenetic analysis and classification of recent dabbling ducks (tribe Anatini) based on comparative morphology. Auk 108: 471–507.

    Article  Google Scholar 

  • Livezey, B. C. (1993): Comparative morphometrics ofAnas ducks, with particular reference to the Hawaiian DuckAnas wyvilliana, Laysan DuckA. laysanensis, and Eaton's PintailA. eatoni. Wildfowl 44: 75–100.

    Google Scholar 

  • Livezey, B. C. (1995a): Phylogeny and comparative ecology of stiff-tailed ducks (Anatidae: Oxyurini). Wilson Bull. 107: 214–234.

    Google Scholar 

  • Livezey, B. C. (1995b): Phylogeny and evolutionary ecology of modern seaducks (Anatidae: Mergini). Condor 97: 233–255.

    Article  Google Scholar 

  • Livezey, B. C. (1996a): A phylogenetic analysis of modern pochards (Anatidae: Aythyini). Auk 113: 74–93.

    Article  Google Scholar 

  • Livezey, B. C. (1996b): A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. Syst. Biol. 45: 415–450.

    Article  Google Scholar 

  • Livezey, B. C. (1997): A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae, Tadornini). Ibis 139: 51–66.

    Article  Google Scholar 

  • Livezey, B. C. & Humphrey, P. S. (1986): Flightlessness in steamer-ducks (Anatidae:Tachyeres): its morphological bases and probable evolution. Evolution 40: 540–558.

    PubMed  Google Scholar 

  • Martin, R. D. & Barbour, A. D. (1989): Aspects of line-fitting in bivariate allometric analyses. Folia Primatologia 53: 65–81.

    Article  CAS  Google Scholar 

  • Mazer, S. J. & Wheelwright, N. T. (1993): Fruit size and shape: allometry at different taxonomic levels in bird-dispersed plants. Evol. Ecol. 7: 556–575.

    Article  Google Scholar 

  • McArdle, B. H. (1988): The structural relationship: regression in biology. Can. J. Zool. 66: 2329–2339.

    Article  Google Scholar 

  • Navarro, J. D., Green, A. J. & Aranda, J. C. (1995): Status of Marbled Teal in southern Alicante, Spain. IWRB Threatened Waterfowl Research Group Newsletter 8: 7–10.

    Google Scholar 

  • Nudds, T. D. & Bowlby, J. N. (1984): Predator-prey size relationships in North American dabbling ducks. Can. J. Zool. 62: 2002–2008.

    Article  Google Scholar 

  • Nudds, T. D. & Kaminski, R. M. (1984): Sexual size dimorphism in relation to resource partitioning in North American dabbling ducks. Can. J. Zool. 62: 2009–2012.

    Article  Google Scholar 

  • Pagel, M. D. & Harvey, P. H. (1988): The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. Am. Nat. 132: 344–359.

    Article  Google Scholar 

  • Pagel, M. D. & Harvey, P. H. (1989): Taxonomic differences in the scaling of brain on body weight among mammals. Science 244: 1589–1593.

    Article  CAS  PubMed  Google Scholar 

  • Parker Cane, W. (1993): The ontogeny of postcranial integration in the Common Tern,Sterna hirundo. Evolution 47: 1138–1151.

    Article  PubMed  Google Scholar 

  • Pehrsson, O. (1987): Effects of body condition on molting in Mallards. Condor 89: 329–339.

    Article  Google Scholar 

  • Pennycuick, C. J. (1989): Bird flight performance. A practical calculation manual. Oxford.

  • Peters, R. H. (1983): The ecological implications of body size. Cambridge.

  • Prange, H. D., Anderson, J. F. & Rahn, H. (1979): Scaling of skeletal mass to body mass in birds and mammals. Am. Nat. 113: 103–122.

    Article  Google Scholar 

  • Price, M. V. (1993): A functional-morphometric analysis of forelimbs in bipedal and quadrupedal heteromyid rodents. Biol. J. Linn. Soc. 50: 339–360.

    Article  Google Scholar 

  • Purvis, A. & Rambaut, A. (1995): Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Appl. Biosciences 11: 247–251.

    CAS  Google Scholar 

  • Raikow, R. J. (1973): Locomotor mechanisms in North American ducks. Wilson Bull. 85: 295–307.

    Google Scholar 

  • Rayner, J. M. V. (1985): Linear relations in biome-chanics: the statistics of scaling functions. J. Zool, Lond. 206: 415–439.

    Article  Google Scholar 

  • Rayner, J. M. V. (1988): Form and function in avian flight. In:. R. F. Johnston (Ed.): Current Ornithology. Vol. 5: 51–66. New York.

  • Ricker, W. E. (1984): Computation and uses of central trend lines. Can. J. Zool. 62: 1897–1905.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. (1984): Scaling: why is animal size so important? Cambridge.

  • Scott, D. A. & Rose, P. M. (1996): Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publ. 41. Wageningen, the Netherlands: Wetlands International.

  • Senar, J. C., Lleonart, J. & Metcalfe, N. B. (1994): Wing-shape variation between resident and transient wintering SiskinsCarduelis spinus. J. Avian Biol. 25: 50–54.

    Article  Google Scholar 

  • Silva, M. (1998): Allometric scaling of body length: elastic or geometric similarity in mammalian design. J. Mamm. 79: 20–32.

    Article  Google Scholar 

  • Simmons, L. W. & Tomkins, J. L. (1996): Sexual selection and the allometry of earwig forceps. Evol. Ecol. 10: 97–104.

    Article  Google Scholar 

  • Simmons, R. E. & Scheepers, L. (1996): Winning by a neck: sexual selection in the evolution of giraffe. Am. Nat. 148: 771–786.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995): Biometry. New York.

  • Worcester, S. E. (1996): The scaling of the size and stiffness of primary flight feathers. J. Zool, Lond. 239: 609–624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy J. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A.J., Figuerola, J. & King, R. Comparing interspecific and intraspecific allometry in the Anatidae. J Ornithol 142, 321–334 (2001). https://doi.org/10.1007/BF01651371

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01651371

Keywords

Navigation