Skip to main content
Log in

Susceptibility forN-ras-mediated transformation requires loss of tumor suppressor activity

  • Published:
Somatic Cell and Molecular Genetics

Abstract

We have been using PA-1 human teratocarcinoma cells to study mechanisms by which oncogenes induce transformation. Tumorigenic PA-1 cells at passages greater than 100 (>P100) contain a spontaneously activatedN-ras oncogene, while earlier-passage preneoplastic cells contain only the germ-line protooncogene and are nontumorigenic. One preneoplastic cell clone of PA-1 cells can be transformed by introduction of the cloned PA-1N-ras in gene-transfer experiments, while another earlier-passage clonal cell line cannot be transformed. The goal of this investigation was to determine how human cells progress from resistance to susceptibility toras oncogene-induced transformation. Somatic cell hybridization experiments described in this report indicate that the resistance of the low-passage cells to transformation is a dominant trait suppressing transformation. Loss of chromosomes from hybrid segregants suggested that tumor suppressors exist on chromosomes 1, 4, and 11. Extended in vitro passaging of somatic cell hybrids also resulted in the loss of chromosomes. Chromosome 1 was lost in these populations of cells, implying that reduction of this chromosome may promote proliferation and not specifically affect tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Harris, H., Miller, O.J., Klein, G., Worst, P., and Tachibana, T. (1969).Nature 223363–368.

    Google Scholar 

  2. Harris, H., and Klein, G. (1969).Nature 2241314–1316.

    Google Scholar 

  3. Jonasson, J., Povey, S., and Harris, H. (1977).J. Cell Sci. 24217–254.

    Google Scholar 

  4. Stanbridge, E.J. (1976).Nature 26017–20.

    Google Scholar 

  5. Klinger, H.P. (1982).Cytogenet. Cell Genet. 3268–84.

    Google Scholar 

  6. Benedict, W.F., Weissman, B.E., Mark, C., and Stanbridge, E.J. (1984).Cancer Res. 443471–3479.

    Google Scholar 

  7. Stanbridge, E.J., Flandermeyer, R.R., Daniels, D., and Nelson-Rees, W.A. (1981).Somat. Cell Genet. 7699–712.

    Google Scholar 

  8. Klinger, H.P., and Kaelbling, M. (1986).Cytogenet. Cell Genet. 42225–235.

    Google Scholar 

  9. Saxon, P.J., Srivatsan, E.S., and Stanbridge, E.J. (1986).EMBO J. 53461–3466.

    Google Scholar 

  10. Weissman, B.E., Saxon, P.J., Pasquale, S.R., Jones, G.R., Geiser, A.G., and Stanbridge, E.J. (1987).Science 236175–180.

    Google Scholar 

  11. Weinberg, R.A. (1985).Science 230770–776.

    Google Scholar 

  12. Bishop, J.M. (1987). The molecular genetics of cancer.Science 235305–311.

    Google Scholar 

  13. Land, H., Parada, L.F., and Weinberg, R.A. (1983).Nature 304596–602.

    Google Scholar 

  14. Sinn, E., Muller, W., Pattengale, P., Tepler, I., Wallace, R., and Leder, P. (1987).Cell 49465–475.

    Google Scholar 

  15. Thomassen, D.G., Gilmer, T.M., Annab, L.A., and Barrett, J.C. (1985).Cancer Res. 45726–732.

    Google Scholar 

  16. Sager, R. (1985).Adv. Cancer Res. 4443–68.

    Google Scholar 

  17. Geiser, A.G., Der, C.J., Marshall, C.J., and Stanbridge, E.J. (1986).Proc. Natl. Acad. Sci. U.S.A. 835209–5213.

    Google Scholar 

  18. Oshimura, M., Gilmer, T.M., and Barrett, J.C. (1985).Nature 316636–639.

    Google Scholar 

  19. Koi, M., and Barrett, J.C. (1986).Proc. Natl. Acad. Sci. U.S.A. 835992–5996.

    Google Scholar 

  20. Zeuthen, J., Norgaard, J.O.R., Avner, P., Fellous, M., Wartiovaara, J., Vaheri, A., Rosen, A., and Giovanella, B.C. (1980).Int. J. Cancer 2519–32.

    Google Scholar 

  21. Tainsky, M.A., Cooper, C.S., Giovanella, B.C., and Vande Woude, G.F. (1984).Science 225643–645.

    Google Scholar 

  22. Tainsky, M.A., Shamanski, F., Blair, D., and Giovanella, B.C. (1987).Cancer Res. 473235–3238.

    Google Scholar 

  23. Tainsky, M.A., Krizman, D.B., Chiao, P.J., Yim, S.O., and Giovanella, B.C. (1988).Anticancer Res. 8899–914.

    Google Scholar 

  24. Yoakum, G.H. (1984).Biotechniques 224–29.

    Google Scholar 

  25. Davidson, R.L., and Gerald, P.S. (1976).Somat. Cell Genet. 2165–176.

    Google Scholar 

  26. Knudson, A.G., and Strong, L.C. (1972).J. Natl. Cancer Inst. 48313–324.

    Google Scholar 

  27. Patterson, H., Reeves, B., Brown, R., Hall, A., Furth, M., Bos, J., Jones, P., and Marshall, C. (1987).Cell 51803–812.

    Google Scholar 

  28. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989)Cell 5677–84.

    Google Scholar 

  29. Pizon, V., Chardin, P., Lerosey, I., Olofsson, B., and Tavitian, A. (1988).Oncogene 3201–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krizman, D.B., Giovanella, B.C. & Tainsky, M.A. Susceptibility forN-ras-mediated transformation requires loss of tumor suppressor activity. Somat Cell Mol Genet 16, 15–27 (1990). https://doi.org/10.1007/BF01650476

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01650476

Keywords

Navigation