Skip to main content

Renormalization of a quadratic interaction in the Hamiltonian formalism


The method of the dressing transformation is used to perform a mass renormalization of a neutral scalar free field in the Hamiltonian formalism, for arbitrary space dimension. The resulting situation is analyzed by means of a Bogoliubov transformation, and seen to yield the expected results.

This is a preview of subscription content, access via your institution.


  1. Glimm, J.: Commun. Math. Phys.5, 343 (1967);6, 61 (1967).

    Google Scholar 

  2. —— Commun. Math. Phys.10, 1 (1968).

    Google Scholar 

  3. Guénin, M., Velo, G.: Helv. Phys. Acta41, 362 (1968).

    Google Scholar 

  4. Hepp, K.: Colloque international du CNRS, Gif sur Yvette (1969).

  5. Friedrichs, K. O.: Perturbation of spectra in Hilbert space. Am. Math. Soc., Providence (1965).

    Google Scholar 

  6. Glimm, J.: Lecture notes in Varenna, 1968.

  7. Ginibre, J.: Seminar notes on Euclidean Quantum Field Theory, IHES (1966).

  8. Glauber, R. J.: Phys. Rev.131, 2766 (1963).

    Google Scholar 

  9. Nelson, E.: Operator differential equations. Princeton University lecture notes, 1965.

Download references

Author information

Authors and Affiliations


Additional information

Laboratoire associé au C.N.R.S.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ginibre, J., Velo, G. Renormalization of a quadratic interaction in the Hamiltonian formalism. Commun.Math. Phys. 18, 65–81 (1970).

Download citation

  • Received:

  • Issue Date:

  • DOI:


  • Neural Network
  • Statistical Physic
  • Complex System
  • Nonlinear Dynamics
  • Quantum Computing