Skip to main content
Log in

The endothelial L-arginine/nitric oxide pathway and the renal circulation

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Endothelial cells contain an enzyme(s) which produces nitric oxide from L-arginine in response to a variety of mechanical stimuli as well as to autacoids and local and circulating hormones. Nitric oxide is a potent vasodilator and inhibitor of platelet function; it exerts its effects via activation of soluble guanylate cyclase and subsequent formation of cyclic 3′–5′-guanosine monophosphate. In the kidney, activation of the endothelial L-arginine pathway is associated with increases in renal blood flow, diuresis and natriuresis, while the glomerular filtration rate remains constant. The activity of the endothelial L-arginine pathway is impaired in hypertension and during chronic therapy with cyclosporine A. In addition, diabetes and atherosclerosis impair this pathway. Thus, the endothelial L-arginine pathway plays an important role in the local regulation of blood flow. Alterations in the activity of this pathway may play an important role in the pathophysiology of hypertension and renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

Adenosine disphosphate

ATP:

Adenosine triphosphate

Cyclic GMP:

Cyclic guanosine monophosphate

EDRF:

Endothelium-derived relaxing factor

GFR:

Glomerular filtration rate

L-NMMA:

L-NG-monomethyl arginine

NO:

Nitric oxide

PGI2 :

Prostacyclin

SHR:

Spontaneously hypertensive rat

References

  1. Aoki N, Siegfried M, Lefer AM (1989) Anti-EDRF effect of tumor necrosis factor in isolated, perfused cat carotid arteries. Am J Physiol 256:H 1509-H1512

    Google Scholar 

  2. Baylis C, Deen WM, Myers BD, Brenner BM (1976) Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am J Physiol 230:1148–1158

    Google Scholar 

  3. Biondi ML, Dousa T, Vanhoutte PM, Romero JC (1990) Evidences for the existence of endothelium-derived relaxing factor in the renal medulla. Am J Hypertension 3:876–878

    Google Scholar 

  4. Bossaller C, Olbricht CJ, Reschke V, Gutjare E, Burgwitz K (1989) Effect of cyclosporine A on endothelium-dependent and endothelium-independent vascular relaxations (Abstract). Kidney Int 35:505A

    Google Scholar 

  5. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acat Sci USA 87:682–685

    Google Scholar 

  6. Burton GA, MacNeil S, De Jonge A, Haylor J (1990) Cyclic GMP release and vasodilatation induced by EDRF and atrial natriuretic factor in isolated perfused kidney of the rat. Br J Pharmacol 99:364–368

    Google Scholar 

  7. Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–630

    Google Scholar 

  8. Conger JD, Robinette JB, Schrier RW (1988) Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest 82:532–537

    Google Scholar 

  9. Dicorleto PE, Fox PL (1988) Growth factor production by endothelial cells. In: Ryan U (ed) Endothelial cells, vol II. CRC Press, Boca Raton, pp 51–61

    Google Scholar 

  10. Diederich D, Yang Z, Bühler FR, Lüscher TF (1990) Impaired endothelium-dependent relaxations in hypertensive mesenteric resistance arteries involve cyclooxygenase pathway. Am J Physiol 258:H445-H451

    Google Scholar 

  11. Dohi Y, Thiel M, Bühler FR, Lüscher TF (1990) Activation of endothelial L-arginine pathway in resistance arteries: effect of age and hypertension. Hypertension 15:170–179

    Google Scholar 

  12. Edwards RM (1985) Response in isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am J Physiol 248:183–189

    Google Scholar 

  13. Feelisch M, Noack EA (1987) Correlation between NO formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    Google Scholar 

  14. Förstermann U, Mülsch A, Böhme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholineinduced endothelium-derived factor from rabbit and canine arteries. Circ Res 58:531–538

    Google Scholar 

  15. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 299:373–376

    Google Scholar 

  16. Garg UC, Hassid A (1989a) NO-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    Google Scholar 

  17. Garg UC, Hassid A (1989b) Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators. Am J Physiol 257:F60-F66

    Google Scholar 

  18. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–387

    Google Scholar 

  19. Gerkens JF (1989) Cyclosporine treatment of normal rats produces a rise in blood pressure and decreased renal vascular responses to nerve stimulation, vasoconstrictors and endothelium-dependent dilators. J Pharmacol Exp Ther 250:1105–1112

    Google Scholar 

  20. Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for L-arginine deiminase and amino nitrogen oxidation to nitrite. Science 235:473–476

    Google Scholar 

  21. Kato T, Iwana Y, Okumura K, Hashimoto H, Ito T, Satake T (1990) Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 15:475–482

    Google Scholar 

  22. Katusic ZS, Shepherd JT, Vanhoutte PM (1984) Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ Res 55:575–579

    Google Scholar 

  23. Kelleher SP, Robinette JB, Conger JD (1984) Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol 246:379–386

    Google Scholar 

  24. Kitagawa H, Takeda F, Kohei H (1987) Endothelium-dependent increases in rat gastric mucosal hemodynamics induced by acetylcholine and vagal stimulation. Eur J Pharmacol 133:57–63

    Google Scholar 

  25. Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M (1989) Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension 14:542–548

    Google Scholar 

  26. Kon Y, Harris RC, Ichikawa I (1990) A regulatory role for large vessels in organ circulation: endothelial cells of the main renal artery modulate intrarenal hemodynamics in the rat. J Clin Invest 85:1728–1733

    Google Scholar 

  27. Konishi M, Su C (1983) Role of endothelium in dilator responses of spontaneously hypertensive rats' arteries. Hypertension 5:881–886

    Google Scholar 

  28. Lahera V, Salom MG, Fiksen-Olsen MJ, Raij L, Romero JC (1990) Effects of NG-monomethyl-L-arginine anre L-arginine on acetylcholine renal response. Hypertension 15:659–663

    Google Scholar 

  29. Lieberthal W, Wolf EF, Rennke HG, Valeri CR, Levinsky NG (1990) Renal ischemia and reperfusion impair endothelium-dependent vascular relaxation. Am J Physiol 256:894–900

    Google Scholar 

  30. Linder L, Kiowski W, Bühler FR, Lüscher TF (1990) Indirect evidence for the release of endothelium-derived relaxing factor in the human forearm circulation: blunted response in hypertension. Circulation 81:1762–1767

    Google Scholar 

  31. Lorenz RR, Sanchez-Ferrer CF, Burnett JC, Vanhoutte PM (1988) Influence of endocardial-derived factor(s) on the release of atrial natriuretic factor (Abstract). FASEB Journal 2:1293

    Google Scholar 

  32. Loutzenhiser R, Hayashi K, Epstein M (1990) Evidence for multiple endothelium-derived relaxing factors (EDRFs) in the renal microcirculation: hemoglobin inhibits acetylcholine (ACH)-induced vasodilation of efferent, but not afferent arterioles (Abstract). Kidney Int 37:373

    Google Scholar 

  33. Lüscher TF, Vanhoutte PM (1986a) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rats. Hypertension 8:344–348

    Google Scholar 

  34. Lüscher TF, Vanhoutte PM (1986b) Endothelium-dependent responses to aggregating platelets and serotonin in spontaneously hypertensive rats. Hypertension 8 (Suppl II):55–60

    Google Scholar 

  35. Lüscher TF, Vanhoutte PM, Raij L (1987) Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 9:193–197

    Google Scholar 

  36. Lüscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC Press, Boca Raton

    Google Scholar 

  37. Lüscher TF, Cooke JP, Houston DS, Neves R, Vanhoutte PM (1987) Endothelium-dependent relaxations in human arteries. Mayo Clin Proc 62:601–606

    Google Scholar 

  38. Lüscher TF, Raij L, Vanhoutte PM (1987) Endotheliumdependent responses in normotensive and hypertensive Dahl rats. Hypertension 9:157–163

    Google Scholar 

  39. Lüscher TF, Rubanyi GM, Aarhus LL, Edoute Y, Vanhoutte PM (1987) Serotonin reduces coronary flow in the isolated heart of the spontaneously hypertensive rat. J Hypertension 4:148–150

    Google Scholar 

  40. Lüscher TF, Diederich D, Siebenmann R, Lehmann K, Stulz P, von Segesser L, Yang Z, Turina M, Grädel E, Weber E, Bühler FR (1988) Difference between endothelium-dependent relaxations in arterial and in venous coronary bypass grafts. N Engl J Med 319:462–467

    Google Scholar 

  41. Lüscher TF, Bock AH, Yang Z, Diederich D (1991) Endothelium-derived relaxing and contracting factors: perspectives in nephrology. Kidney Int 39:575–590

    Google Scholar 

  42. Marletta MA (1989) NO: biosynthesis and biological significance. Trends Pharmacol Sci 14:488–492

    Google Scholar 

  43. Marsden PA, Brock TA, Ballermann BJ (1990) Glomerular endothelial cells respond to calcium-mobilizing agonists with release of EDRF. Am J Physiol 258:F1295-F1303

    Google Scholar 

  44. Mayhan WG, Faraci FM, Heistad DD (1987) Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 253:1435–1440

    Google Scholar 

  45. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Res 30:293–331

    Google Scholar 

  46. Myers PR, Guerra R Jr, Bates JN, Harrison DG (1989) Studies on the properties of endothelium-derived relaxing factor (EDRF), NO, and nitrosothiols: similarities between EDRF and S-nitroso-L-cysteine (cysNO) (Abstract). J Vasc Med Biol 1/2:106

    Google Scholar 

  47. Neild GH, Reuben R, Hartley RB, Cameron JS (1985) Glomerular thrombi in renal allografts associated with cyclosporine treatment. J Clin Pathol 38:253–258

    Google Scholar 

  48. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize NO from L-arginine. Nature 333:664–666

    Google Scholar 

  49. Palmer RMJ, Ferrige AG, Moncada S (1987) NO release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Google Scholar 

  50. Panza JA, Quyyumi AA, Brush JE, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27

    Google Scholar 

  51. Parnevalas JG, Kelly W, Burnstock G (1985) Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in the rat brain. Nature 316:724–725

    Google Scholar 

  52. Pfeilschifter J, Schwarzenbach H (1990) Interleukin-1 and tumor necrosis factor stimulate cGMP formation in rat renal mesangial cells. FEBS Lett 273:185–187

    Google Scholar 

  53. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44

    Google Scholar 

  54. Radomski MW, Palmer RMJ, Moncada S (1987a) The antiaggregating properties of vascular endothelium: interactions between prostacyclin and NO. Br J Pharmacol 92:639–646

    Google Scholar 

  55. Radomski MW, Palmer RMJ, Moncada S (1987b) Endogenous NO inhibits human platelet adhesion to vascular endothelium. Lancet II:1057–1068

    Google Scholar 

  56. Radomski MW, Palmer RMJ, Moncada S (1990) An Larginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    Google Scholar 

  57. Rapoport RM, Draznin MB, Murad F (1983) Endotheliumdependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:174–176

    Google Scholar 

  58. Rees DD, Palmer RMJ, Moncada S (1989) The role of endothelium-derived NO in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Google Scholar 

  59. Richard V, Tschudi M, Lüscher TF (1990) Differential activation of the endothelial L-arginine pathway by bradykinin, serotonin and clonidine in porcine coronary arteries. Am J Physiol 259:H1433-H1439

    Google Scholar 

  60. Rimele TJ, Sturm RJ, Adams LM, Henry DE, Heaslip RJ, Weichman BM, Grimes D (1988) Interaction of neutrophils with vascular smooth muscle: identification as a neutrophilderived relaxing factor. J Pharmacol Exp Ther 245:102–111

    Google Scholar 

  61. Rinaldi G, Bohr D (1989) Endothelium-mediated spontaneous response in aortic rings of deoxycorticosterone acetatehypertensive rats. Hypertension 13:256–261

    Google Scholar 

  62. Shimokawa H, Flavahan NA, Lorenz RR, Vanhoutte PM (1988) Prostacyclin releases endothelium-derived relaxing factor and potentiates its action in coronary arteries of the pig. Br J Pharmacol 95:1197–1203

    Google Scholar 

  63. Schultz P, Schorer AR, Raij L (1990) Effects of endothelium derived relaxing factor (EDRF) and NO (NO) on rat mesangial cells. Am J Physiol 258:F162-F167

    Google Scholar 

  64. Shulman H, Striker G, Deeg H, Kennedy M, Storb R, Donnall TE (1981) Nephrotoxicity of cyclosporine A after allogenic bone marrow transplantation. N Engl J Med 305:1392–1395

    Google Scholar 

  65. Thomas CE, Ott CE, Bell PD, Knox FG, Navar LG (1983) Glomerular filtration dynamics during renal vasodilation with acetylcholine in the dog. Am J Physiol 244:606–611

    Google Scholar 

  66. Tollins JP, Palmer RMJ, Moncada S, Raij L (1990) Role of endothelium-derived relaxing factor in the hemodynamic response to acetylcholine in vivo. Am J Physiol 258:655–662

    Google Scholar 

  67. Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived NO on peripheral arteriolar tone in man. Lancet 251:997–1000

    Google Scholar 

  68. Vane J (1990) Endothelins come home to roost. Nature 348:674–675

    Google Scholar 

  69. Vidal MJ, Romero JC, Vanhoutte PM (1988) Endotheliumderived relaxing factor inhibits renin release. Eur J Pharmacol 149:401–402

    Google Scholar 

  70. Yang Z, Diederich D, Bühler FR, Lüscher TF (1989) Chronic cyclosporine therapy impairs endothelium-dependent relaxations in the renal circulation (Abstract). Kidney Int 35:511A

    Google Scholar 

  71. Yang Z, von Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF (1991) Different activation of the endothelial L-arginine and cyclooxyenase pathway in the human internal mammary artery and saphenous vein. Circ Res 68:52–60

    Google Scholar 

  72. Yang Z, Stulz P, von Segesser L, Bauer E, Turina M, Lüscher TF (1991) Platelets differently interact with arterial and venous coronary bypass grafts: role of endotheliumderived nitric oxide and antiplatelet drugs. Lancet 337:939–943

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preprint of a lecture to be read at the 22nd Congress of the “Gesellschaft für Nephrologie”, Heidelberg, September 15–18, 1991 (Editor: Prof. Dr. E. Ritz, Heidelberg)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüscher, T.F., Bock, H.A. The endothelial L-arginine/nitric oxide pathway and the renal circulation. Klin Wochenschr 69, 603–609 (1991). https://doi.org/10.1007/BF01649323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01649323

Key words

Navigation