Skip to main content
Log in

Construction de solutions radiatives approchées des equations d'Einstein

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we construct rigorously, without any averaging scheme, an hyperbolic metric

$$g\alpha \beta (x,\omega \varphi ) = \mathop g\limits^0 \alpha \beta (x) + \frac{1}{\omega }\mathop g\limits^{\text{1}} \alpha \beta (x,\omega \varphi ) + \frac{1}{{\omega ^2 }}\mathop g\limits^{\text{2}} \alpha \beta (x,\omega \varphi )$$
((1))

wherex is a point of the space-timeV 4, ϕ a scalar function onV 4 (the “phase”) and ω a great parameter (the “frequency”). This metric is an approximate solution of Einstein's equations: it verifies

$$R\alpha \beta = 0(\omega ^{ - 1} )$$
((2))

,\(\mathop g\limits^0 \alpha \beta \) and its derivatives,\(\mathop g\limits^1 \alpha \beta \) and\(\mathop g\limits^2 \alpha \beta \) being bounded, the first and second derivatives of\(\mathop g\limits^1 \alpha \beta ,\mathop g\limits^2 \alpha \beta \) of order respectively 0(ω) and 0(ω2).

We first show that the Ricci tensor of (1) stays bounded (when ω increases), with a perturbation\(\mathop g\limits^1 \alpha \beta \) physically significant, if and only if ϕ verifies the characteristic equation of the back-ground metric and\(\mathop g\limits^1 \alpha \beta \) four algebraic, linear relations, (5.7) and (5.8) in radiative coordinatesx 0 = ϕ.

We show afterwards that (1) satisfies (2) if\(\mathop g\limits^1 \alpha \beta \) satisfies ordinary differential first order equations (which take a very simple form in radiative coordinates) along the rays of the background, the preceding algebraic relations can be considered as “initial conditions” if the Ricci tensor of the background is of the radiative form

$$R\alpha \beta = (\mathop g\limits^0 \lambda \mu ) = \tau \partial \alpha \varphi \partial \beta \varphi $$
((3))

It is possible to find\(\mathop g\limits^1 \alpha \beta \) and\(\mathop g\limits^2 \alpha \beta \) with the required conditions of boundedness only if

$$\tau > 0$$

We apply the results to the Vaydya metric (13.1) and show that, by an oscillatory perturbation of this metric one can satisfy Einstein's equations (to the order ω−1) if the coefficientm usually interpreted as the mass is a decreasing function of ϕ =u, which gives, in this context, a proof of the loss of mass by gravitational radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. Choquet-Bruhat, Y.: C.R. Acad Sc.258, 3809–3812 (1964) et264, 625 (1967).

    Google Scholar 

  2. Garding, L., T. Kotake etJ. Leray: Bull. Soc. Math.92, 263 (1964).

    Google Scholar 

  3. Wheeler, J. A.: Geometrodynamics. New York: Academic Press 1962.

    Google Scholar 

  4. Brill, D. R., andJ. B. Hartle: Phys. Rev.135 B, 271 (1964).

    Google Scholar 

  5. Isaacson, R. A.: Thèse, University of Maryland 1967.

  6. Cattaneo, C.: Annali di mat. pura ed. appl.48, 361 (1959).

    Google Scholar 

  7. Lichnerowicz, A.: Ann. di Mat. pura ed. appl.50, 1 (1960).

    Google Scholar 

  8. Gomes, A.: C.R. Acad. Sc.262, 412 (1966);262, 603 (1966) et thèse université de Coîmbra 1966.

    Google Scholar 

  9. Choquet-Bruhat, Y.: Annales Institut Poincaré série A 1968.

  10. Trautman, A.: Bull. Acad. Polon. des Sc.6, 407 (1958).

    Google Scholar 

  11. Bondi, H., M. van der Bemg, andA. Metzner: Proc. Roy. Soc. A263, 21 (1962).

    Google Scholar 

  12. Sachs, R. K.: Proc. Roy. Soc. A270, 103 (1962).

    Google Scholar 

  13. Lax, P.: Duke Math. J.24, 627–646 (1957).

    Google Scholar 

  14. Ludwig, D.: Comm. on pure and ap. Maths.99, 263–361 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choquet-Bruhat, Y. Construction de solutions radiatives approchées des equations d'Einstein. Commun.Math. Phys. 12, 16–35 (1969). https://doi.org/10.1007/BF01646432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01646432

Navigation