Skip to main content
Log in

The optimal shape design method applied to modelling thermal thinning of the oceanic lithosphere near hot spots

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Резюме

Прuменяя меmо¶rt; оnmuмaльного nоuскa облaсmu, коmорыŭ в общuх черmaх оnuсывaеmся, u ¶rt;aнные о mеnловом nоmоке, вычuсленa формa лumосферы u ее mеnловое nоле в верmuкaльноŭ nлоскосmu, naрaллельноŭ скоросmu лumосферы оmносumельно uсmочнuкaгорячеŭ mочкu u у¶rt;aленноŭ nрuблuзumельно 250 км оm лuнuuгaвaŭского aрхunелaгa. Резульmamы срaвнены с вычuсленuямu, основaннымu нa u¶rt;еu Крaфa (Crough), кaсaющuмuся mеnлового уmоненuя океaнuческоŭ лumосферы нa¶rt; uсmочнuкомгорячеŭ mочкu. Еслu nре¶rt;nоложumь, чmо лamерaльное nоnеречное сеченuе лumосферuческого ¶rt;нa оnuсывaеmся крuвоŭ Гaуссa Δh=Δh0 exp (−y2/2σ2), mо nолучumся Δh0 ≦35 кмuσ ≧130 км,г¶rt;е Δh—лumосферuческое уmоненuе u у—лamерaльнaя коор¶rt;uнama. Сле¶rt;овamельно, σ=130 км являеmся нuжным nре¶rt;елом лamерaльного рaзмерaгaвaŭскоŭ aномaлuu.

Summary

Using the optimal shape design method, which is generally described, and von Herzen's et al. measurements of the heat flow, the shape of the lithosphere and its thermal field is computed in the vertical plane parallel to the hot spot source versus the plate velocity at a distance of about 250 km from the axis of the Hawaiian Island chain. The results are compared with the computations based on Crough's idea of thermal rejuvenation of the oceanic lithosphere above a hot spot source. If we assume that the lateral cross-section of the lithospheric bottom is described by the Gaussian curve Δh=Δh0 exp (−y2/2σ2), we obtain Δh0≦35 km and σ≧130 km, where Δh is the value of lithospheric thinning and y the lateral coordinate. We thus obtain the lower limit of the lateral dimension of the Hawaiian anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. S. Birch: Conductive Heat Flow Anomalies over a Hot Spot in a Moving Medium. J. Geoph. Res., 80 (1975), 4825.

    Article  Google Scholar 

  2. A. Brandt: Multi-level Adaptive Solutions to Boundary-value Problems. Math. Comput., 31 (1977), 333.

    Article  Google Scholar 

  3. K. C. Burke, J. T. Wilson: Hot Spots on the Earth's Surface. Sci. Am., 235 (1976), 46.

    Article  Google Scholar 

  4. S. T. Crough: Thermal Origin of Mid-plate, Hot-spot Swells. Geoph. J. R. Astr. Soc., 55 (1978), 451.

    Article  Google Scholar 

  5. R. S. Detrick, S. T. Crough: Island Subsidence, Hot Spots and Lithospheric Thinning. J. Geoph. Res., 83 (1978), 1236.

    Article  Google Scholar 

  6. D. Epp: Implications of Volcano and Swell Heights for Thinning of the Lithosphere by Hot Spots. J. Geoph. Res., 89 (1984), 9991.

    Article  Google Scholar 

  7. D. Epp: Possible Perturbations to Hotspot Traces and Implications for the Origin and Structure of the Line Islands. J. Geoph. Res., 89 (1984), 11273.

    Article  Google Scholar 

  8. J. Haslinger: Personal Communication. 1985.

  9. R. L. Heestand, S. T. Crough: The Effect of Hot Spots on the Oceanic Age-Depth Relation. J. Geoph. Res., 86 (1981), 6107.

    Article  Google Scholar 

  10. D. M. Jurdy, R. D. Gordon: Global Plate Motions Relative to Hot Spots 64 to 54 Ma. J. Geoph. Res., 89 (1984), 9927.

    Article  Google Scholar 

  11. M. K. McNutt: Lithospheric Flexure and Thermal Anomalies. J. Geoph. Res., 89 (1984), 11180.

    Article  Google Scholar 

  12. J.-C. Mareschal: Uplift and Heat Flow Following the Injection of Magmas into the Lithosphere. Geoph. J. R. Astr. Soc., 73 (1983), 109.

    Article  Google Scholar 

  13. C. Matyska: One Thermal Model of the Young Oceanic Lithosphere: Direct Problem. Studia geoph. et geod., 30 (1986), 172.

    Article  Google Scholar 

  14. H. W. Menard, M. McNutt: Evidence for and Consequences of Thermal Rejuvenation. J. Geoph. Res., 87 (1982), 8570.

    Article  Google Scholar 

  15. J. B. Minster, T. H. Jordan: Present-day Plate Motions. J. Geoph. Res., 83 (1978), 5331.

    Article  Google Scholar 

  16. W. J. Morgan: Convection Plumes in the Lower Mantle. Nature, 230 (1971), 42.

    Article  Google Scholar 

  17. J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.

    Google Scholar 

  18. R. L. Parker, D. W. Oldenburg: Thermal Model of Ocean Ridges. Nature, 242 (1973), 137.

    Google Scholar 

  19. B. Parsons, D. P. McKenzie: Mantle Convection and the Thermal Structure of the Plates. J. Geoph. Res., 83 (1978), 4485.

    Article  Google Scholar 

  20. O. Pironneau: Optimal Shape Design for Elliptic System. Springer, Berlin etc. 1984.

    Book  Google Scholar 

  21. K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL, Praha 1974. English translation: Variational methods. Reidel Co., Dordrecht — Boston 1977.

    Google Scholar 

  22. D. T. Sandwell: A Detailed View of the South Pacific Geoid from Satellite Altimetry. J. Geoph. Res., 89 (1984), 1089.

    Article  Google Scholar 

  23. D. T. Sandwell: Thermal Isostasy: Response of a Moving Lithosphere to a Distributed Heat Source. J. Geoph. Res., 87 (1982), 1001.

    Article  Google Scholar 

  24. D. T. Sandwell, K. A. Poehls: A Compensation Mechanism for the Central Pacific. J. Geoph. Res., 85 (1980), 3751.

    Article  Google Scholar 

  25. J. G. Schilling: Upper Mantle Heterogeneites and Dynamics. Nature, 314 (1985), 62.

    Article  Google Scholar 

  26. J. G. Schilling, G. Thompson, R. Kingsley, S. Humphris: Hotspot-Migrating Ridge Interaction in the South Atlantic. Nature, 313 (1985), 187.

    Article  Google Scholar 

  27. W. Schroeder: The Empirical Age-Depth Relation and Depth Anomalies in the Pacific Ocean Basin. J. Geoph. Res., 89 (1984), 9873.

    Article  Google Scholar 

  28. J. G. Sclater, J. Francheteau: The Implications of Terrestrial Heat Flow Observations on Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth. Geoph. J. R. Astr. Soc., 20 (1970), 509.

    Article  Google Scholar 

  29. Okeanologia: Geofizika Okeana. Tom 2 Geodinamika. Ed. O. G. Sorokhtin, Nauka, Moskva 1979.

    Google Scholar 

  30. T. Spohn, G. Schubert: Convective Thinning of the Lithosphere: A Mechanism for Rifting and Mid-plate Volcanism on Earth, Venus, and Mars. Tectonoph., 94 (1983), 67.

    Article  Google Scholar 

  31. M. Stefanick, D. M. Jurdy: The Distribution of Hot Spots. J. Geoph. Res., 89 (1984), 9919.

    Article  Google Scholar 

  32. D. L. Turcotte, E. R. Oxburgh: Mid-plate Tectonics. Nature, 244 (1973), 337.

    Article  Google Scholar 

  33. G. E. Vink: A Hotspot Model for Iceland and the Vøring Plateau. J. Geoph. Res., 89 (1984), 9949.

    Article  Google Scholar 

  34. R. P. von Herzen, R. S. Detrick, S. T. Crough, D. Epp, U. Fehn: Thermal Origin of the Hawaiian Swell: Heat Flow Evidence and Thermal Models. J. Geoph. Res., 87 (1982), 6711.

    Article  Google Scholar 

  35. T. Yoshii: Regionality of Group Velocities of Rayleigh Waves in the Pacific and Thickening of the Plate. Earth. Plan. Sci. Lett., 25 (1975), 305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matyska, C. The optimal shape design method applied to modelling thermal thinning of the oceanic lithosphere near hot spots. Stud Geophys Geod 30, 356–375 (1986). https://doi.org/10.1007/BF01646380

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01646380

Keywords

Navigation