Skip to main content
Log in

Central decomposition of invariant states applications to the groups of time translations and of euclidean transformations in algebraic field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

With\(\mathfrak{A}\) aC*-algebra with unit andgG→α g a homomorphic map of a groupG into the automorphism group ofG, the central measureμ Φ of a state Φ of\(\mathfrak{A}\) is invariant under the action ofG (in the state space of\(\mathfrak{A}\)) iff Φ is α-invariant. Furthermore if the pair {\(\mathfrak{A}\),G} is asymptotically abelian, Φ is ergodic iffμ Φ is ergodic. Transitive ergodic states (corresponding to transitive central measures) are centrally decomposed into primary states whose isotropy groups form a conjugacy class of subgroups. IfG is locally compact and acts continuously on\(\mathfrak{A}\), the associated covariant representations of {\(\mathfrak{A}\), α} are those induced by such subgroups. Transitive states under time-translations must be primary if required to be stable. The last section offers a complete classification of the isotropy groups of the primary states occurring in the central decomposition of euclidean transitive ergodic invariant states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastler, D., Robinson, D. W.: Invariant states in statistical mechanics. Commun. math. Phys.3, 151 (1966).

    Google Scholar 

  2. Robinson, D. W., Ruelle, D.: Extremal invariant states. Ann. Inst. Henri Poincaré, Sect. A6, 299 (1967).

    Google Scholar 

  3. Doplicher, S., Kastler, D.: Ergodic states in a non commutative ergodic theory. Commun. math. Phys.7, 1 (1968).

    Google Scholar 

  4. —— —— Størmer, E.: Invariant states and asymptotic abelianness. J. Functional Anal.3, 419 (1969).

    Google Scholar 

  5. Sakai, S.: On the central decomposition for positive functionals onC*-algebras. Trans. Am. Math. Soc.118, 406 (1965).

    Google Scholar 

  6. Guichardet, A., Kastler, D.: Décomposition des états quasi-invariants desC*-algèbres. J. Math. Pures Appl.49, 349 (1970).

    Google Scholar 

  7. Ruelle, D.: Integral representation of states on aC*-algebra. J. Functional Anal.6, 116 (1970).

    Google Scholar 

  8. Dixmier, J.: LesC*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.

    Google Scholar 

  9. Segal, I. E.: Irreducible représentations of operator algebras. Bull. Am. Math. Soc.53, 73 (1947).

    Google Scholar 

  10. Gelfand, I. M., Neumark, M. A.: Normed rings with involution and their representations. Izsvest. Ser. Math.12, 445 (1948).

    Google Scholar 

  11. Effros, E.: Convergence of closed subsets in a topological space. Proc. Am. Math. Soc.16, 929 (1965).

    Google Scholar 

  12. Feldman, J.: Borel sets of states and of representations. Michigan Math. J.12, 363 (1965).

    Google Scholar 

  13. Kadison, R. V.: Transformation of states in operator theory and dynamics, topology.3, Suppl. 2, 177 (1965).

  14. Hille, E., Phillips, R. S.: Functional analysis and semi-groups. Am. Math. Soc. Coll. Publ. Providence R. I. (1957).

  15. Glicksberg de Leuw: J. Analyse Math., t.15, 135–192 (1965).

    Google Scholar 

  16. Segal, I. E.: A class of operator algebras which are determined by groups. Duke Math. J.18, 221 (1951).

    Google Scholar 

  17. Doplicher, S., Kastler, D., Robinson, Derek W.: Covariance algebras in field theory and statistical mechanics. Commun. math. Phys.3, 1 (1966).

    Google Scholar 

  18. Ruelle, D.: States of physical systems. Commun. math. Phys.3, 133 (1966).

    Google Scholar 

  19. Doplicher, S., Kadison, R. V., Kastler, D., Robinson, Derek W.: Asymptotically abelian systems. Commun. math. Phys.6, 101 (1967).

    Google Scholar 

  20. Størmer, E.: Large groups of automorphisms ofC*-algebras. Commun. math. Phys.5, 1 (1967).

    Google Scholar 

  21. Bourbaki, N.: Livre III topologie générale, fascicule de résultats. Paris: Hermann 1964.

    Google Scholar 

  22. Neveu, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1964.

    Google Scholar 

  23. Mackey, G. W.: Induced representations of locally compact groups. Ann. Math.55, 101 (1952).

    Google Scholar 

  24. -- The theory of group representations. Mimeographed Chicago University Lecture Notes (1955).

  25. —— Unitary representations of group extensions I. Acta Math.99, 265 (1958).

    Google Scholar 

  26. —— Borel structures in groups and their duals. Trans. Am. Math. Soc.85, 134 (1957).

    Google Scholar 

  27. Guichardet, A.: Utilisation des sous-groupes distingués dans l'étude des représentations unitaires des groupes localement compacts. Compos. Math.17, 1 (1965).

    Google Scholar 

  28. Fell, J. M. G.: An extension of Mackey's method to representations of algebraic bundles I, II and III (to appear).

  29. Zeller-Meier, G.: Produits croisés d'uneC*-algèbre par un groupe d'automorphismes. C. R. Acad. Sci. Paris,263, 20 (1966).

    Google Scholar 

  30. -- Produits croisés d'uneC*-algèbre par un groupe d'automorphismes. Preprint (1967).

  31. Takesaki, M.: Covariant representation ofC*-algebras and their locally compact automorphisms groups (to appear).

  32. Mostow, G. D.: Homogeneous spaces with finite invariant measure. Ann. Math.75, 17 (1962).

    Google Scholar 

  33. Bourbaki, N.: Livre VI intégration, ch. VII, Mesure de Haar. Paris: Hermann 1963.

    Google Scholar 

  34. See for instanceN. Bourbaki III. Topologie générale, ch. VII, les groupes additifsR n, § 1, n0 2: “Sous-groupes fermés deR n”. Paris: Hermann 1967.

  35. Bieberbach, L.: Examples of fundamental references for (i) (ii) (iii). Math. Ann.70, 297 (1911).

    Google Scholar 

  36. See a Bourbaki: III Topologie générale, ch. 3, Groupes topologiques.

  37. Hewitt, E., Ross, K. A.: Abstract harmonic analysis I. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  38. Wolf, J. A.: Spaces of constant curvature. New York: McGraw Hill 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastler, D., Mebkhout, M., Loupias, G. et al. Central decomposition of invariant states applications to the groups of time translations and of euclidean transformations in algebraic field theory. Commun.Math. Phys. 27, 195–222 (1972). https://doi.org/10.1007/BF01645692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645692

Keywords

Navigation