Advertisement

Communications in Mathematical Physics

, Volume 16, Issue 1, pp 34–47 | Cite as

Einstein tensor and generalizations of Birkhoff's theorem

  • Hubert Goenner
Article

Abstract

The Einstein tensors of metrics having a 3-parameter group of (global) isometries with 2-dimensional non-null orbitsG3(2,s/t) are studied in order to obtainalgebraic conditions guaranteeing an additional normal Killing vector. It is shown that Einstein spaces withG3(2,s/t) allow aG4. A critical review of some of the literature on Birkhoff's theorem and its generalizations is given.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Critical Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G. D.: Relativity and modern physics, p. 255. Cambridge: Harvard University Press 1923.Google Scholar
  2. 2.
    Jebson, J. T.: Ark. Mat. Astron. Fys.15, 1 (1921).Google Scholar
  3. 2a.
    Alexandrow, W.: Ann. Physik72, 141 (1923).Google Scholar
  4. 3.
    Anderson, J. L.: Principles of relativity physics, p. 336. New York: Academic Press 1967.Google Scholar
  5. 4.
    Synge, J. L.: Relativity, the general theory, p. 276. Amsterdam: North-Holland Publ. Co. 1966Google Scholar
  6. 5.
    Plebanski, J.: Acta Phys. Polon.26, 963 (1964).Google Scholar
  7. 6.
    Takeno, H.: The theory of spherically symmetric space times (Scientific Report No. 5 of the Research Institute for Theoretical Physics, Hiroshima University, 1966).Google Scholar
  8. 7.
    Petrow, A. S.: Einstein-Räume, S. 190. German translation: Berlin: Akademie Verlag 1964Google Scholar
  9. 8.
    Cahen, M., Debever, R.: Compt. Rend.260, 815 (1965).Google Scholar
  10. 9.
    Goenner, H., Stachel, J.: Einstein tensor and 3-parameter groups of isometries with 2-dimensional orbits. Preprint 1968. (to appear in J. Math. Phys.)Google Scholar
  11. 10.
    Kruchkovich, G. I.: Uspekh. Mat. Nauk9, 10 (1954); Mat. Sbornik41, 209 (1957); Petrow, A. S., [7], p. 60.Google Scholar
  12. 11.
    Eiesland, J.: Am. Math. Soc. Trans.27, 213 (1925).Google Scholar
  13. 12.
    Bonnor, W. B.: In: Recent developments in general relativity, p. 167. New York: Pergamon Press 1962.Google Scholar
  14. 13.
    Lichnerowicz, A.: Théories relativistes de la gravitation et de l'électromagnetisme, p. 5. Paris: Masson et Cie. 1955.Google Scholar
  15. 14.
    Petrov, A. Z.: JETP17, 1026 (1963).Google Scholar
  16. 15.
    Hamoui, A.: Compt. Rend.258, 6085 (1964).Google Scholar
  17. 16.
    Bergmann, P. G., Cahen, M., Komar, A. B.: J. Math. Phys.6, 1 (1965).Google Scholar
  18. 17.
    Papapetrou, A.: Compt. Rend.257, 2616 (1963).Google Scholar
  19. 18.
    Hoffmann, B.: Quart. J. Math.3, 226 (1932) and4, 179 (1933); and in Ref. 12, p. 279.Google Scholar
  20. 19.
    Plebanski, J., Stachel, J.: J. Math. Phys.9, 269 (1968).Google Scholar
  21. 20.
    Taub, A. H.: Ann. Math.53, 472 (1951).Google Scholar
  22. 21.
    Bianchi, L.: Lezioni sulla teoria dei gruppi finiti di trasformazioni. Pisa: Spoerri 1918.Google Scholar
  23. 22.
    Goursat, E.: Cours d'analyse mathematique, 4 Ed., Tome 3, p. 71. Paris: Gauthier-Villars 1927.Google Scholar
  24. 23.
    Sommerfeld, A.: In: Encyklopädie der Mathematischen Wissenschaften, II, 7c, 553 (1916).Google Scholar
  25. 24.
    Hoffman, R. B.: J. Math. Phys.10, 953 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Hubert Goenner
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGermany

Personalised recommendations