Abstract
Each gauge invariant generalized free state ω A of the anticommutation relation algebra over a complex Hilbert spaceK is characterized by an operatorA onK. It is shown that the cyclic representations induced by two gauge invariant generalized free states ω A and ω B are quasi-equivalent if and only if the operatorsA 1/2−B 1/2 and (I−A)1/2−(I−B)1/2 are of Hilbert-Schmidt class. The combination of this result with results from the theory of isomorphisms of von Neumann algebras yield necessary and sufficient conditions for the unitary equivalence of the cyclic representations induced by gauge invariant generalized free states.
Similar content being viewed by others
References
Araki, H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys.4, 1343–1362 (1963).
-- Woods, E. J.: A classification of factors. To appear.
Balslev, E., Verbeure, A.: States on Clifford algebras. Commun. Math. Phys.7, 55–76 (1968).
—— Manuceau, J., Verbeure, A.: Representations of anticommutation relations and Bogulioubov transformations. Commun. Math. Phys.8, 315–326 (1968).
Bures, D. H.: Certain factors constructed as infinite tensor products. Comp. Math.15, 169–191 (1963).
Combes, F.: Sur les etats factoriels d'une C*-algèbres. Compt. Rend. Ser. A–B,265, 736–739 (1967).
Cook, J. M.: The mathematics of second quantization. Trans. Am. Math. Soc.80, 470–501 (1955).
Dell'Antonio, G. F.: Structure of the algebras of some free systems. Commun. Math. Phys.9, 81–117 (1968).
Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.
—— Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc.95, 318–340 (1960).
—— Kadison, R. V.: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960).
Guichardet, M. A.: Produits tensoriels infinis et représentations des relations d'anticommutations. Ann. Sci. Ecole Norm. Super.83, 1–52 (1966).
Kadison, R. V.: Isomorphisms of factors of infinite type. Canad. J. Math.7, 322–327 (1955).
—— Unitary invariants for representations of operator algebras. Ann. Math.66, 304–379 (1957).
Kakutani, S.: On equivalence of infinite product measures. Ann. Math.49, 214–224 (1948).
Kaplansky, I.: A theorem on rings of operators. Pacific J. Math.1, 227–232 (1951).
Manuceau, J., Rocca, F., Testard, D.: On the product form of quasi-free states. To appear.
Moore, C. C.: Invariant measures on product spaces. Proc. of the Fifth Berkeley Symposium on Math. Stat. and Probab. Vol. II, part II, 447–459 (1967).
Murray, F. J., von Neumann, J.: On rings of operators. Ann. Math.37, 116–229 (1936).
von Neumann, J.: Charakterisierung des Spektrums eines integralen Operators. Actualités Scient. et Ind., No. 229 (1935).
Powers, R. T.: Representations of the canonical anticommutation relations. Thesis Princeton Univ (1967).
—— Representations of uniformly hyperfinite algebras and their associated rings. Ann. Math.86, 138–171 (1967).
Rideau, G.: On some representations of the anticommutation relations. Commun. Math. Phys.9, 229–241 (1968).
Segal, I. E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc.88, 12–41 (1958).
Shale, D., Stinespring, W. F.: States on the Clifford algebra. Ann. Math.80, 365–381 (1964).
Author information
Authors and Affiliations
Additional information
Work supported in part by US Atomic Energy Commission, under Contract AT (30-1)-2171 and by the National Science Foundation.
Rights and permissions
About this article
Cite this article
Powers, R.T., Størmer, E. Free states of the canonical anticommutation relations. Commun.Math. Phys. 16, 1–33 (1970). https://doi.org/10.1007/BF01645492
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01645492