Skip to main content
Log in

Free states of the canonical anticommutation relations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Each gauge invariant generalized free state ω A of the anticommutation relation algebra over a complex Hilbert spaceK is characterized by an operatorA onK. It is shown that the cyclic representations induced by two gauge invariant generalized free states ω A and ω B are quasi-equivalent if and only if the operatorsA 1/2B 1/2 and (IA)1/2−(IB)1/2 are of Hilbert-Schmidt class. The combination of this result with results from the theory of isomorphisms of von Neumann algebras yield necessary and sufficient conditions for the unitary equivalence of the cyclic representations induced by gauge invariant generalized free states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys.4, 1343–1362 (1963).

    Google Scholar 

  2. -- Woods, E. J.: A classification of factors. To appear.

  3. Balslev, E., Verbeure, A.: States on Clifford algebras. Commun. Math. Phys.7, 55–76 (1968).

    Google Scholar 

  4. —— Manuceau, J., Verbeure, A.: Representations of anticommutation relations and Bogulioubov transformations. Commun. Math. Phys.8, 315–326 (1968).

    Google Scholar 

  5. Bures, D. H.: Certain factors constructed as infinite tensor products. Comp. Math.15, 169–191 (1963).

    Google Scholar 

  6. Combes, F.: Sur les etats factoriels d'une C*-algèbres. Compt. Rend. Ser. A–B,265, 736–739 (1967).

    Google Scholar 

  7. Cook, J. M.: The mathematics of second quantization. Trans. Am. Math. Soc.80, 470–501 (1955).

    Google Scholar 

  8. Dell'Antonio, G. F.: Structure of the algebras of some free systems. Commun. Math. Phys.9, 81–117 (1968).

    Google Scholar 

  9. Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.

    Google Scholar 

  10. —— Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.

    Google Scholar 

  11. Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc.95, 318–340 (1960).

    Google Scholar 

  12. —— Kadison, R. V.: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960).

    Google Scholar 

  13. Guichardet, M. A.: Produits tensoriels infinis et représentations des relations d'anticommutations. Ann. Sci. Ecole Norm. Super.83, 1–52 (1966).

    Google Scholar 

  14. Kadison, R. V.: Isomorphisms of factors of infinite type. Canad. J. Math.7, 322–327 (1955).

    Google Scholar 

  15. —— Unitary invariants for representations of operator algebras. Ann. Math.66, 304–379 (1957).

    Google Scholar 

  16. Kakutani, S.: On equivalence of infinite product measures. Ann. Math.49, 214–224 (1948).

    Google Scholar 

  17. Kaplansky, I.: A theorem on rings of operators. Pacific J. Math.1, 227–232 (1951).

    Google Scholar 

  18. Manuceau, J., Rocca, F., Testard, D.: On the product form of quasi-free states. To appear.

  19. Moore, C. C.: Invariant measures on product spaces. Proc. of the Fifth Berkeley Symposium on Math. Stat. and Probab. Vol. II, part II, 447–459 (1967).

    Google Scholar 

  20. Murray, F. J., von Neumann, J.: On rings of operators. Ann. Math.37, 116–229 (1936).

    Google Scholar 

  21. von Neumann, J.: Charakterisierung des Spektrums eines integralen Operators. Actualités Scient. et Ind., No. 229 (1935).

  22. Powers, R. T.: Representations of the canonical anticommutation relations. Thesis Princeton Univ (1967).

  23. —— Representations of uniformly hyperfinite algebras and their associated rings. Ann. Math.86, 138–171 (1967).

    Google Scholar 

  24. Rideau, G.: On some representations of the anticommutation relations. Commun. Math. Phys.9, 229–241 (1968).

    Google Scholar 

  25. Segal, I. E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc.88, 12–41 (1958).

    Google Scholar 

  26. Shale, D., Stinespring, W. F.: States on the Clifford algebra. Ann. Math.80, 365–381 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by US Atomic Energy Commission, under Contract AT (30-1)-2171 and by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powers, R.T., Størmer, E. Free states of the canonical anticommutation relations. Commun.Math. Phys. 16, 1–33 (1970). https://doi.org/10.1007/BF01645492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645492

Keywords

Navigation