Skip to main content
Log in

Biotransformation von ausgewählten Gyrasehemmern

Biotransformation of certain gyrase inhibitors

  • Pharmakokinetik
  • Published:
Infection Aims and scope Submit manuscript

Zusammenfassung

Die Gyrasehemmer Norfloxacin, Ciprofloxacin, Pefloxacin und Ofloxacin haben als gemeinsame Grundstruktur das 3-Carboxy-4-oxo-6-fluor-7-(1-piperazinyl)-1,4-dihydrochinolin. Sie durchlaufen verschiedene Biotransformationen, die an Tieren und teilweise auch beim Menschen beschrieben worden sind: 1. Konjugation der Carboxylgruppe mit Glukuronsäure. (Die Bildung des O-Methylesters von Norfloxacin ist nur bei der Ratte gefunden worden). 2. Oxidation des Piperazin-Ringes zur 3-Oxo-Verbindung und Abbau (oder Zerfall) des Piperazin-Ringes über mehrere Zwischenstufen bis zum vollständigen Abbau der Seitenkette. 3. Substitution des in Parastellung nicht besetzten Piperazin-Ringes zum N-Azetyl-bzw. N-Formyl-Derivat (Norfloxacin, Ciprofloxacin). 4. Demethylierung der 4-Methyl-piperazin-Seitenkette (Pefloxacin, Ofloxacin). 5. N-Oxidation der 4-Methyl-piperazin-Seitenkette (Pefloxacin, Ofloxacin). Die Glukuronide sind mikrobiologisch inaktiv. Die Aktivität der Produkte mit modifizierter Piperazin-Seitenkette wechselt von hoch (Oxo-Verbindungen) bis gering (nach Ringspaltung). Quantitative Daten über die Bildung der genannten Metabolite beim Menschen sind zur Zeit noch spärlich. Als Hauptmetabolit wird zumeist das Oxo-Derivat gefunden. Es ist anzunehmen, daß von einigen Substanzen in Zukunft noch weitere Metabolite identifiziert werden.

Summary

The common structure of the gyrase inhibitors norfloxacin, ciprofloxacin, pefloxacin, and ofloxacin is 3-carboxy-4-oxo-6-fluoro-7-(1-piperazinyl)-1,4-dihydro-quinolone. Several biotransformations of these substances are reported in the literature, mostly in animals and partly in humans: 1. Conjugation of the carboxylic acid to glucuronic acid (formation of an O-methyl ester of norfloxacin was found only in the rat); 2. Oxidation of the piperazine ring to the oxo derivative and subsequent metabolisation (or degradation) of the piperazine ring to several intermediates and finally to elimination of the side chain; 3. Substitution of the piperazine side chain to the 4-N-acetyl or 4-N-formylderivative (norfloxacin, ciprofloxacin); 4. Methylation of the 4-methyl-piperazine side chain (pefloxacin, ofloxacin). 5. N-oxidation of the 4-methyl-piperazine side chain (pefloxacin, ofloxacin). The glucuronides are microbiologically inactive. The activity of metabolites with a modified piperazine side chain varies from high (oxo derivatives) to low (after splitting of the ring). Quantitative data on the formation of the described transformation products in humans are presently still incomplete. The oxo derivative appears to be the main metabolite of norfloxacin and ciprofloxacin. Aditional metabolites to the described ones are likely to be detected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. McChesney, E. W., Froelich, E. J., Lesher, G. Y., Crain, A. V. R., Rosi, D. Absorption, excretion and metabolism of a new antibacterial agent, nalidixic acid. Toxicol. Appl. Pharmacol. 6 (1964) 292 (zitiert nach (2).

    Google Scholar 

  2. Graber, H., Perènyi, T., Ludwig, E., Arr, M. The human biotransformation of nalidixic acid. Int. J. Clin. Pharmacol. 13 (1976) 76–82.

    Google Scholar 

  3. Mössner, A. Über Wirksamkeit, Dosierung und Vergiftungserscheinungen von Piperazin-Präparaten. Med. Monatsschr. Pharm. 10 (1956) 517–526.

    Google Scholar 

  4. Goodman, Gilman, A., Goodman, L. S., Gilman, A.: The pharmacologic basis of therapeutics. New York. Sixth edition, 1980, p. 1023.

  5. Breyer, U., Gaertner, H. J., Prox, A. Formation of identical metabolites from piperazine- and dimethylamino-substituted phenothiazine drugs in man, rat and dog. Biochem. Pharmacol. 23 (1974) 313–322.

    Google Scholar 

  6. Borner, K., Lode, H., Gau, W.: Determination of ciprofloxacin, a new antibacterial agent, in human body fluids. 8th Internat. Symposium on column liquid chromatography. New York. Abstract 3a-01, 1984.

  7. Boppan, V. K., Swanson, B. N. Determination of norfloxacin, a new nalidixic acid analog, in human serum and urine by high-performance liquid chromatography. Antimicrob. Agents Chemother. 21 (1982) 808–810.

    Google Scholar 

  8. Forchetti, C., Flammini, D., Carlucci, G., Cavicchio, G. High-performance liquid chromatographic procedure for the quantitation of norfloxacin in urine, serum and tissues. J. Chromatogr. 309 (1984) 177–182.

    Google Scholar 

  9. Borner, K., Höffken, G., Prinzing, C., Lode, H. Renale Ausscheidung von Ciprofloxacin und einigen Metaboliten nach einmaliger oraler oder intravenöser Applikation von 50 mg. Fortschr. Antimikrob. Antineoplast. Chemotherapie 3–5 (1984) 695–699.

    Google Scholar 

  10. Borner, K., Lode, H.: 1984. (Unveröffentlicht).

  11. Nagatsu, Y., Endo, K., Irikura, T. Studies on the fate of 14C-labelled AM-715. Chemotherapy 29 (1981) 104–118.

    Google Scholar 

  12. Rogers, J. D.: Disposition and bioavailability of norfloxacin following oral administration in man. 13th Internat. Congress Chemotherapy, Wien. Proceedings, part 38, p. 19–23, 1983.

  13. Ozaki, T., Uchida, H., Irikura, T. Studies on metabolism of AM-715 in human by high-performance liquid chromatography. Chemotherapy 29 (1981) 128–135.

    Google Scholar 

  14. Zeiler, H.-J., Gau, W., Petersen, U.: 24th Interscience Conf. Antimicrob. Agents Chemother. (1983) Abstract 983.

  15. Borner, K., Lode, H., Höffken, G.: 1985. (Unveröffentlicht).

  16. Roquet, F., Montay, G., Goueffon, Y.: Pefloxacin main metabolites in mouse, rat, dog, rabbitt and man. 13th Internat. Congress Chemotherapy, Wien. Proceedings, part 110, p. 10–13, 1983.

  17. Tachizawa, N. Metabolic fate of DL-8280 in human. Identification of metabolites. Studie des Forschungsinstitutes der Fa. Daiichi Seiyaku Co, Ltd., Tokyo, 1983.

    Google Scholar 

  18. Tanimura, W.-F., Hikasa, Y., Saito, H., Sato, T., Takahashi, H.: Excretion into bile, tissue levels in gallbladder and clinical effects of DL-8280 in biliary tract infections. 13th Internat. Congress Chemotherapy, Wien. Proceedings, p. 35–40, 1983.

  19. Dagrosa, E., Seeger, K., Malerczyk, V., Lameire, N. Pharmakokinetik von Ofloxacin (Hoe 280). Fortschr. Antimikrob. Antineoplast. Chemotherapie 3–5 (1984) 665–671.

    Google Scholar 

  20. Ohmori, Y., Murayama, S., Abe, Y., Irikura, T. Studies on the bioassay method of AM-715 in body fluids. Chemotherapy 29 (1981) 91–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borner, K., Lode, H. Biotransformation von ausgewählten Gyrasehemmern. Infection 14 (Suppl 1), S54–S59 (1986). https://doi.org/10.1007/BF01645200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645200

Navigation