Abstract
A one dimensional infinite quantum spin lattice with a finite range interaction is studied. The Gibbs state in the infinite volume limit is shown to exist as a primary state of a UHF algebra. The expectation value of any local observables in the state as well as the mean free energy depend analytically on the potential, showing no phase transition. The Gibbs state is an extremal KMS state.
Similar content being viewed by others
References
Araki, H., and E. J. Woods: A complete Boolean lattice of type I factors. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,2, 157–242 (1966).
——, and H. Miyata: On KMS boundary condition. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,4, 373–385 (1968).
—— Multiple time analyticity of a quantum statistical states satisfying the KMS boundary condition. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,4, 361–371 (1968).
—— A classification of factors II. Publ. Res. Math. Sci. Kyoto Univ. Ser. A,4, 585–593 (1968).
Fujiwara, I.: Operator calculus of quantized operator. Progr. Theoret. Phys.7, 433–448 (1952).
Galavotti, G., S. Miracle-Sole, and D. W. Robinson: Analyticity properties of the anisotropic Heisenberg model. Commun. Math. Phys.10, 311–324 (1968).
Ginibre, J.: Reduced density matrices of the anisotropic Heisenberg model. Commun. Math. Phys.10, 140–154 (1968).
Greenberg, W.: Correlation functionals of infinite volume quantum spin systems. Commun. Math. Phys.11, 314–320 (1969).
Landford III, O. E., and D. Ruelle: Observables at infinity and states with short range correlation in statistical mechanics. (preprint).
Powers, R. T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. of Math.86, 138–171 (1967).
Robinson, D. W.: Statistical mechanics of quantum spin system II. Commun. Math. Phys.7, 337–348 (1968).
Ruelle, D.: Statistical mechanics of a one dimensional lattice gas. Commun. Math. Phys.9, 267–278 (1968).
Streater, R. F.: The Heisenberg ferromagnet as a quantum field theory. Commun. Math. Phys.6, 233–247 (1967).
Wils, W.: Désintégration centrale des formes positives desC*-algebres. (preprint).
Author information
Authors and Affiliations
Additional information
On leave from Research Institute for Mathematical Sciences, Kyoto University Kyoto, Japan.
Rights and permissions
About this article
Cite this article
Araki, H. Gibbs states of a one dimensional quantum lattice. Commun.Math. Phys. 14, 120–157 (1969). https://doi.org/10.1007/BF01645134
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01645134