Skip to main content
Log in

Gibbs states of a one dimensional quantum lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A one dimensional infinite quantum spin lattice with a finite range interaction is studied. The Gibbs state in the infinite volume limit is shown to exist as a primary state of a UHF algebra. The expectation value of any local observables in the state as well as the mean free energy depend analytically on the potential, showing no phase transition. The Gibbs state is an extremal KMS state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., and E. J. Woods: A complete Boolean lattice of type I factors. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,2, 157–242 (1966).

    Google Scholar 

  2. ——, and H. Miyata: On KMS boundary condition. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,4, 373–385 (1968).

    Google Scholar 

  3. —— Multiple time analyticity of a quantum statistical states satisfying the KMS boundary condition. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A,4, 361–371 (1968).

    Google Scholar 

  4. —— A classification of factors II. Publ. Res. Math. Sci. Kyoto Univ. Ser. A,4, 585–593 (1968).

    Google Scholar 

  5. Fujiwara, I.: Operator calculus of quantized operator. Progr. Theoret. Phys.7, 433–448 (1952).

    Google Scholar 

  6. Galavotti, G., S. Miracle-Sole, and D. W. Robinson: Analyticity properties of the anisotropic Heisenberg model. Commun. Math. Phys.10, 311–324 (1968).

    Google Scholar 

  7. Ginibre, J.: Reduced density matrices of the anisotropic Heisenberg model. Commun. Math. Phys.10, 140–154 (1968).

    Google Scholar 

  8. Greenberg, W.: Correlation functionals of infinite volume quantum spin systems. Commun. Math. Phys.11, 314–320 (1969).

    Google Scholar 

  9. Landford III, O. E., and D. Ruelle: Observables at infinity and states with short range correlation in statistical mechanics. (preprint).

  10. Powers, R. T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. of Math.86, 138–171 (1967).

    Google Scholar 

  11. Robinson, D. W.: Statistical mechanics of quantum spin system II. Commun. Math. Phys.7, 337–348 (1968).

    Google Scholar 

  12. Ruelle, D.: Statistical mechanics of a one dimensional lattice gas. Commun. Math. Phys.9, 267–278 (1968).

    Google Scholar 

  13. Streater, R. F.: The Heisenberg ferromagnet as a quantum field theory. Commun. Math. Phys.6, 233–247 (1967).

    Google Scholar 

  14. Wils, W.: Désintégration centrale des formes positives desC*-algebres. (preprint).

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Research Institute for Mathematical Sciences, Kyoto University Kyoto, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, H. Gibbs states of a one dimensional quantum lattice. Commun.Math. Phys. 14, 120–157 (1969). https://doi.org/10.1007/BF01645134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645134

Keywords

Navigation