Abstract
The concept of coherent states originally closely related to the nilpotent group of Weyl is generalized to arbitrary Lie group. For the simplest Lie groups the system of coherent states is constructed and its features are investigated.
Similar content being viewed by others
References
Glauber, R. J.: Phys. Rev.130, 2529 (1963);131, 2766 (1963).
Klauder, J. R., Sudarshan, E. C. G.: Fundamentals of quantum optics. New York: Benjamin 1968.
Zeldovich, B. Ya., Perelomov, A. M., Popov, V. S.: JETP55, 589 (1968);57, 196 (1969); Preprints ITEP No.612, 618 (1968).
Weyl, H.: Gruppentheorie und Quantenmechanik. Leipzig: S. Hirzel 1928.
Barut, A. O., Girardello, L.: Commun. math. Phys.21, 41 (1971).
Mackey, G. W.: Bull. Am. Math. Soc.69, 628 (1963).
Perelomov, A. M.: Theoret. Math. Phys.6, 213 (1971).
Cartier, P.: Symp. Pure Math., v. 9, Algebraic groups and discontinuous subgroups, p. 361. Providence, R.I.: Amer. Math. Soc. 1966.
Gelfand, I. M., Minlos, R. A., Shapiro, Z. Ya.: Representations of the rotation group and the Lorentz group. Oxford: Pergamon Press 1963.
Vilenkin, N. Ya.: Special functions and the theory of group representations. Providence, R.I.: Amer. Math. Soc. 1968.
Bargmann, V.: Ann. Math.48, 568 (1947).
—— Comm. Pure Appl. Math.14, 187 (1961).
Perelomov, A. M.: Theoret. Math. Phys.6, 368 (1971).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Perelomov, A.M. Coherent states for arbitrary Lie group. Commun.Math. Phys. 26, 222–236 (1972). https://doi.org/10.1007/BF01645091
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01645091