Skip to main content
Log in

Coherent states for arbitrary Lie group

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The concept of coherent states originally closely related to the nilpotent group of Weyl is generalized to arbitrary Lie group. For the simplest Lie groups the system of coherent states is constructed and its features are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glauber, R. J.: Phys. Rev.130, 2529 (1963);131, 2766 (1963).

    Google Scholar 

  2. Klauder, J. R., Sudarshan, E. C. G.: Fundamentals of quantum optics. New York: Benjamin 1968.

    Google Scholar 

  3. Zeldovich, B. Ya., Perelomov, A. M., Popov, V. S.: JETP55, 589 (1968);57, 196 (1969); Preprints ITEP No.612, 618 (1968).

    Google Scholar 

  4. Weyl, H.: Gruppentheorie und Quantenmechanik. Leipzig: S. Hirzel 1928.

    Google Scholar 

  5. Barut, A. O., Girardello, L.: Commun. math. Phys.21, 41 (1971).

    Google Scholar 

  6. Mackey, G. W.: Bull. Am. Math. Soc.69, 628 (1963).

    Google Scholar 

  7. Perelomov, A. M.: Theoret. Math. Phys.6, 213 (1971).

    Google Scholar 

  8. Cartier, P.: Symp. Pure Math., v. 9, Algebraic groups and discontinuous subgroups, p. 361. Providence, R.I.: Amer. Math. Soc. 1966.

    Google Scholar 

  9. Gelfand, I. M., Minlos, R. A., Shapiro, Z. Ya.: Representations of the rotation group and the Lorentz group. Oxford: Pergamon Press 1963.

    Google Scholar 

  10. Vilenkin, N. Ya.: Special functions and the theory of group representations. Providence, R.I.: Amer. Math. Soc. 1968.

    Google Scholar 

  11. Bargmann, V.: Ann. Math.48, 568 (1947).

    Google Scholar 

  12. —— Comm. Pure Appl. Math.14, 187 (1961).

    Google Scholar 

  13. Perelomov, A. M.: Theoret. Math. Phys.6, 368 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perelomov, A.M. Coherent states for arbitrary Lie group. Commun.Math. Phys. 26, 222–236 (1972). https://doi.org/10.1007/BF01645091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645091

Keywords

Navigation