Skip to main content
Log in

Beurteilung der Resistenzentwicklung als Faktor für die Einschränkung therapeutischer Möglichkeiten

Limitation of antibacterial chemotherapy due to development of resistance

  • Nebenwirkungsprofile Bei Antibakteriell Wirksamen Chemotherapeutika
  • Published:
Infection Aims and scope Submit manuscript

Zusammenfassung

Das breite Spektrum der zur Verfügung stehenden Substanzen und die hohe Aktivität neu entwickelter Chemotherapeutika läßt eine allgemein gestiegene Sicherheit in der Chemotherapie erkennen. Für einzelne Substanzgruppen sind jedoch Trends in der Resistenzentwicklung erkennbar. Dazu gehört die Entstehung von Breitspektrumresistenz durch schrittweise Veränderung plasmidcodierter β-Laktamasen (z. B. TEM oder SHV). Kombination verschiedener Gene für Aminoglykosid-modifizierende Enzyme auf einzelnen Plasmiden trägt zur Vielfachresistenz gegenüber Aminoglykosidantibiotika bei. Für die in Enterokokken neu entdeckte Resistenz gegenüber Glykopeptidantibiotika, die als Reservemittel (Methicillin-resistenteStaphylococcus aureus) und für bestimmte Indikationen (Pseudomembranöse Enterocolitis) bisher uneingeschränkt zur Verfügung standen, besteht ebenso wie für die beschriebenen Substanzen die Gefahr der Ausbreitung auf verschiedene Spezies. Trotz der fehlenden Transferierbarkeit der 4-Chinolon-Resistenz zeichnet sich aber auch bei einigen Spezies(Staphylococcus aureus undPseudomonas aeruginosa) eine Veränderung der Resistenzsituation ab, ohne daß es Hinweise auf neuartige Resistenzmechanismen gibt. Statistich gesicherte Dokumentation der Resistenzentwicklung mit validierten Methoden sowie einheitliche Bewertungskriterien nach international festgelegten Breakpoints sind notwendig, um allgemeine Trendänderungen zu erkennen und von lokalen Ereignissen zu unterscheiden. Konsequenterweise muß der Einsatz neuentwickelter Substanzen sorgfältig kontrolliert werden.

Summary

From the microbiological point of view a variety of highly active compounds has contributed to improved efficacy of antibacterial chemotherapy during the last few decades. In some cases, however, resistance has increased due to different molecular mechanisms. Resistance to the new generation of broad-spectrum β-lactams is in the cases of TEM and SHV enzymes based upon the stepwise acquisition of point mutations within the structural gene. Multiresistance to aminoglycosides is caused by a combination of different genes coding for aminoglycoside modifying enzymes on transferable plasmids. Resistance to glycopeptides has recently been detected in enterococci and is due to a new mechanism of resistance. These substances have so far had unlimited activity against methicillin-resistantStaphylococcus aureus and have been widely used for treatment of pseudomembranous colitis. While all the three mechanisms of resistance mentioned above are transferable among different strains, no evidence exists so far for transferable resistance to 4-quinolones. However, forS. aureus andPseudomonas aeruginosa an increase of resistance has been reported. The underlying mechanisms seem to be unchanged. The detection of global changes in the development of resistance and the discrimination of these changes from local events requires recording of statistically significant data obtained with approved methods and evaluation of the data with standardized international breakpoints. Consequently, the use of new agents should be controlled efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Deutsches Institut für Normung e.V. (DIN) 1987 Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika. DIN 58940. Beuth Verlag, Berlin, 1987.

    Google Scholar 

  2. National Committee for Clinical Laboratory Standards (NCCLS) 1979 Performance standards for antimicrobial disk susceptibility tests, 2nd ed. National Committee for Clinical Laboratory Standards, Villanova, Pa., 1979.

    Google Scholar 

  3. Dornbusch, K.: Die Festlegung von Grenzwerten für Antibiotika in anderen Ländern (Skandinavien und Finnland). Fortschritte der Antimikrobiellen, Antineoplastischen Chemotherapie 9–1 (1990) (im Druck).

  4. Duval, H. Evolution and epidemiology of MLS-resistance. J. Anti-microb. Chemother. 16 (Suppl. A) (1985) 137–149.

    Google Scholar 

  5. Wiedemann, B., Kliebe, C., Kresken, M. The epidemiology of β-lactamases, J. Antimicrob. Chemother. 24 (Suppl. B) (1989) 1–22.

    Google Scholar 

  6. Kresken, M., Wiedemann B. Die Epidemiologie der Resistenz bei Bakterien und ihre Bedeutung für die Wirksamkeit von Chemotherapeutika. Fortschritte der Antimikrobiellen, Antineoplastischen Chemotherapie 6 (1987) 869–1063.

    Google Scholar 

  7. Sougakoff, W., Gousard, S., Gerband, G., Courvalin, P. Plasmidmediated resistance to third-generation cephalosporins caused by point-mutations in TEM-type penicillase genes. Rev. Inf. Dis. 10 (1988) 879–884.

    Google Scholar 

  8. Medeiros, A. A. Plasmid-determined β-lactamases. In:L. E. Bryan (ed.) Microbial resistance to drugs. Springer Verlag, Berlin (1989) 101–127.

    Google Scholar 

  9. Percival, A., Rowlands, J., Corkhill, J. E., Alergant, C. D., Arya, O. P., Rees, E. Penicillinase-producing gonococci in Liverpool. Lancet ii (1976) 1379–1382.

    Google Scholar 

  10. Perine, P. I., Schalla, W., Siegel, M. S., Thornsberry, C., Biddle, J., Wong, K.-H., Thompson, S. E. Evidence for two distinct types of penicillinase-producingNeisseria gonorrhoeae. Lancet ii (1977) 993–995.

    Google Scholar 

  11. Thornsberry, C., McDougal, L. K. Ampicillin-resistantHaemophilus influenzae: incidence, mechanism and detection. Postgrad. Med. 71 (1982) 135–145.

    Google Scholar 

  12. Barthélémy, M., Peduzzi, J., Yaghlane, H. B., Labia, R. Single amino acid substitution between SHV-1 beta-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. Fed. Eur. Biochem. Science Lett. 231 (1988) 217–220.

    Google Scholar 

  13. Kliebe, C., Nies, B. A., Meyer, J. F., Tolxdorff-Neutzling, R. M., Wiedemann, B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 28 (1985) 302–307.

    Google Scholar 

  14. Ben Redjeb, S., Ben Yaghane, H., Phillipon, A., Labia, R. Synergy between clavulanic acid and newer β-lactams on nine clinical isolates ofKlebsiella pneumoniae, Escherichia coli andSalmonella typhimurium resistant to third-generation cephalosporins. J. Antimicrob. Chemother. 21 (1988) 263–266.

    Google Scholar 

  15. Antibiotic susceptibility report 1987: IMS America Ltd., P. O. Box 905, Plymouth Meeting, P. A. 19462.

  16. Williamson, R., Colderwood, S. A., Moellering, R. C., Tomasz, A. Studies on the mechanism of intrinsic resistance to β-lactam antibiotics in group D streptococci. J. Clin. Microbiol. 129 (1983) 813–822.

    Google Scholar 

  17. Murray, B. E., Mederski-Samoraj, B. Transferable β-lactamase. A new mechanism forin vitro penicillin resistance inStreptococcus faecalis, J. Clin. Invest. 77 (1983) 289–293.

    Google Scholar 

  18. Spratt, B. G. Resistance to β-lactam antibiotics mediated by alterations of penicillin-binding-proteins. In:Bryan, L. E. (ed.). Microbial resistance to drugs. Springer Verlag, Berlin (1989) 77–100.

    Google Scholar 

  19. Miller, G. H., Sabatelli, F. J., Hare, R. S., Waitz, J. A. Survey of aminoglycoside resistance patterns. Dev. Ind. Microbiol. 21 (1980) 91–104.

    Google Scholar 

  20. Shimizu, K., Kumada, T., Hsieh, W.-C., Chung, H.-Y., Chong, Y., Hare, R. S., Miller, G. H., Sabatelli, F. J., Howard, J. Comparison on aminoglycoside resistance patterns in Japan, Formosa and Korea, Chile, and the United States. Antimicrob. Agents Chemother. 28 (1985) 282–288.

    Google Scholar 

  21. Miller, G. H., Hare, R. S.: The recent emergence of strains containing novel combinations of aminoglycoside resistance mechanisms and the activity against these strains of isepamicin — a new aminoglycoside. Paper presented in the official satellite symposium “Advances in aminoglycosides”, 16th International Congress Chemotherapy, Jerusalem, June (1989).

  22. Levesque, R. L., Jacoby, G. A. Molecular structure and interrelationships of multiresistance transposons. Plasmid 19 (1988) 21–29.

    Google Scholar 

  23. Wiedemann, B., Meyer J. F., Zühlsdorf, M. T. Insertions of resistance genes into Tn21-like transposons. J. Antimicrob. Chemother. 18, Suppl. C (1987) 85–92.

    Google Scholar 

  24. Trieu-Cuot, P., Courvalin, P. Evolution and transfer of aminoglycoside resistance genes under natural conditions. J. Antimicrob. Chemother. 18 Suppl. C (1986) 93–102.

    Google Scholar 

  25. Heisig, P., Wiedemann, B. Bakterielle Resistenz gegen 4-Quinolone: Mechanismus und Bedeutung, Fortschritte der Antimikrobiellen, Antineoplastischen Chemotherapie 8 (1989) 5–14.

    Google Scholar 

  26. Hane, M. W., Wood, T. H. Escherichia coli mutants resistant to nalidixic acid: Genetic mapping and dominance studies. J. Bact. 99 (1969) 238–241.

    Google Scholar 

  27. Kresken, M., Wiedemann B. Development of resistance to nalidixic acid and the fluoroquinolones after the introduction of norfloxacin and ofloxacin. Antimicrob. Agents. Chemother. 32 (1988) 1285–1288.

    Google Scholar 

  28. Kresken, M., Jansen, A., Knothe, H., Wiedemann, B.: Development of resistance to fluoroquinolones between 1983 and 1989. 7th Mediterranean Congress of Chemotherapy, Barcelona (1990) Abstract 619.

  29. European Study Group on Antibiotic Resistance (ESGAR) 1987 (1987).

  30. Uttley, A. H. C., Collins, C. H., Naidoo, J., George, R. C. Vancomycin-resistant enterococci. Lancet i (1988) 57–58.

    Google Scholar 

  31. Leclercq, R., Derlot, E., Duval, J., Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin inEnterococcus faecium. New Engl. J. Med. 319 (1988) 157–161.

    Google Scholar 

  32. Shlaes, D. M., Currie-McCumber, C. A. The molecular epidemiology of antimicrobial resistance. In:L. E. Bryan (ed.) Microbial resistance to drugs. Springer Verlag, Berlin (1989) 387–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heisig, P., Wiedemann, B. Beurteilung der Resistenzentwicklung als Faktor für die Einschränkung therapeutischer Möglichkeiten. Infection 19 (Suppl 1), S47–S51 (1991). https://doi.org/10.1007/BF01644735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644735

Navigation