Skip to main content
Log in

Perspectives of beta-lactamases inhibitors in therapy of infections caused by Escherichia coli or Klebsiella with plasmidic resistance to third generation cephalosporins

Therapeutische Perspektiven von β-Laktamase-Inhibitoren bei Infektionen durch Escherichia coli oder Klebsiella mit plasmid-determinierter Resistenz gegenüber Drittgenerationscephalosporinen

  • Addendum II
  • New Plasmid-Borne β-Lactamases
  • Published:
Infection Aims and scope Submit manuscript

Summary

New plasmidic β-lactamases inactivating so far stable cephalosporins, aztreonam and cephamycins restrict the use of these antibiotics in therapy of infections, e.g., byEscherichia coli and Klebsiella. Thus, combinations of β-lactamase inhibitors and β-lactam antibiotics were investigatedin vitro with regard to their therapeutic perspectives. Minimal inhibitory concentrations and the kinetics of killing in a pharmacodynamic model were determined. Extended broad spectrum betalactamases (EBS-β-lactamases) representative both for the TEM- and SHV-type were included. None of the available fixed combinations of penicillins and β-lactamase inhibitors appears useful for therapy of infections caused by producers of EBS-β-lactamases. In contrast, combinations of piperacillin and tazobactam or sulbactam plus cephalosporins (cefoperazone, cefotaxime, ceftazidime) or aztreonam are highly active (both by their MICs and bactericidal activity) against TEM-type EBS-β-lactamases, but less promising for the SHV-type EBS-β-lactamases, and plasmidic cephamycinase. Of the β-lactams available, the monobactam carumonam and the carbapenems (imipenem, meropenem) remain safe in infections caused byE. coli and Klebsiella EBSBase producers.

Zusammenfassung

Neue plasmid-kodierte β-Laktamasen inaktivieren bisher stabile Cephalosporine, Aztreonam und Cephamycine. Sie schränken damit die therapeutische Sicherheit dieser Antibiotika bei Infektionen zum Beispiel durchEscherichia coli oder Klebsiellaarten ein. Deshalb wurden die therapeutischen Perspektiven von Kombinationen aus β-Laktamase-Inhibitoren und β-Laktam-Antibiotikain vitro analysiert. Die minimalen Hemmkonzentrationen (MHK) wurden gemessen. Zu einem pharmakokinetischen Modell wurde die Abtötungskinetik bestimmt. Einbezogen wurden Enzyme sowohl aus der TEM- als auch der SHV-Reihe. Keine der beiden zugelassenen festen Kombinationen aus Penicillinen und β-Laktamase-Inhibitoren erwies sich als erfolgversprechend für die Therapie von Infektionen durch Stämme, welche β-Laktamasen mit erweitertem Spektrum produzieren. Demgegenüber waren Kombinationen aus Piperacillin und Tazobactam oder Sulbactam mit Cephalosporinen (Cefoperazon, Cefotaxim, Ceftazidim) oder Aztreonam sowohl aufgrund ihrer MHK-Werte als auch ihrer bakteriziden Aktivität im pharmakodynamischen Modell hochaktiv gegenüber TEM-β-Laktamasen mit erweitertem Spektrum, jedoch weniger wirksam bei Stämmen mit neuen Enzymen der SHV-Reihe und plasmid-kodierter Cephamycinasen. Unter den derzeit vorhandenen β-Laktam-Antibiotika kommt anhand ihrerIn-vitro-Aktivität dem Monobactam Carumonam sowie den Carbapenemen (Impipenem, Meropenem) auch ohne β-Laktamase-Inhibitor die größte therapeutische Sicherheit bei Infektionen durchE. coli und Klebsiella-Stämme mit der Fähigkeit zur Synthese von β-Laktamasen mit erweitertem Spektrum zu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philippon, A., Labia, R., Jacoby, G. Extended spectrum β-lactamases. Antimicrob. Agents Chemother. 33 (1989) 1131–1136.

    Google Scholar 

  2. Bauernfeind, A., Chong, Y., Schweighart, S. Extended broad spectrum β-lactamase inKlebsiella pneumoniae including resistance to cephamycins. Infection 17 (1989) 50–55.

    Google Scholar 

  3. Bauernfeind, A., Hörl, G. Novel R-factor borne β-lactamase ofEscherichia coli confering resistance to cephalosporins. Infection 15 (1987) 257–259.

    Google Scholar 

  4. Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., Cluzel, R. Transferable resistance to third-generation cephalosporins in clinical isolates ofKlebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J. Antimicrob. Chemother. 20 (1987) 323–334.

    Google Scholar 

  5. Petit, A., Sirot, D. L., Chanal, C. M., Sirot, J. L., Labia, R., Gerbaud, G., Cluzel, R. A. Novel plasmid-mediated β-lactamase in clinical isolates ofKlebsiella pneumoniae more resistant to ceftazidime than to other broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 32 (1988) 626–630.

    Google Scholar 

  6. Gutmann, L., Kitzis, M. D., Billot-Klein, D., Goldstein, F., Tran Van Nhieu, G., Lu, T., Carlet, J., Collatz, E., Williamson, R. Plasmid-mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Rev. Infect. Dis. 10 (1988) 860–866.

    Google Scholar 

  7. Shah, P. M., Stille, W. Escherichia coli andKlebsiella pneumoniae strains more susceptible to cefoxitin than to third generation cephalosporins. J. Antimicrob. Chemother. 11 (1983) 597–601.

    Google Scholar 

  8. Bauernfeind, A., Shah, P., Petermüller, C., Motz, M.: Plasmid-determined resistance to third generation cephalosporins in Enterobacteria. IV Mediterranean Congress of Chemotherapy (1984). Proceedings 30–31.

  9. Buré, A., Legrand, P., Arlet, G., Jarlier, V., Paul, G., Philippon, A. Dissemination in five French hospitals ofKlebsiella pneumoniae serotype K25 harbouring a new transferable enzymatic resistance to third generation cephalosporins and aztreonam. Eur. J. Clin. Microbiol. 7 (1988) 780–782.

    Google Scholar 

  10. Gutmann, L., Ferré, B., Goldstein, F. W., Rizk, N., Pinto-Schuster, E., Acar, J. F., Collatz, E. SHV-5, a novel SHV-type β-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams. Antimicrob. Agents Chemother. 33 (1989) 951–956.

    Google Scholar 

  11. Bauernfeind, A., Jungwirth, R. Simulation of serum pharmacokinetics of two drugs in a liquid culture ofPseudomonas aeruginosa and analysis of their inactivating activity. Chemotherapy 28 (1982) 334–340.

    Google Scholar 

  12. Beecham-Wülfing: Standard-Information für den Krankenhausapotheker zum Fertigarzneimittel Augmentan® i.v. (1984).

  13. Foulds, G. Pharmacokinetics of sulbactam/ampicillin in humans: a review. Rev. Infect. Dis. 8, Suppl. 5 (1986) 503–506.

    Google Scholar 

  14. Foulds, G., Stankewich, J. P., Marshall, D. C., O'Brien, M. M., Hayes, S. L., Weidler, D. J., McMahon, F. G. Pharmacokinetics of sulbactam in humans. Antimicrob. Agents Chemother. 23 (1983) 692–699.

    Google Scholar 

  15. Cyanamid: Pharmacodynamic research (1988).

  16. Craig, W. A. Single-dose pharmacokinetics of cefoperazone following intravenous administration. Clin. Therapeutics 3 (1980) 46–49.

    Google Scholar 

  17. Drusano, G. L., Standiford, H. C., Fitzpatrick, B., Leslie, J., Tangtatsawasdi, P., Ryan, P., Tatem, B., Moody, M. R., Schimpff, S. C. Comparison of the pharmacokinetics of ceftazidime and moxalactam and their microbiological correlates in volunteers. Antimicrob. Agents Chemother. 26 (1984) 388–393.

    Google Scholar 

  18. Bauernfeind, A. Comparativein-vitro activity of SCH 34343, impenem, cefpirome and cefotaxime. J. Antimicrob. Chemother. 15, Suppl. C (1985) 155–164.

    Google Scholar 

  19. Brun-Buisson, C., Legrand, P., Philippon, A., Montravers, F., Ansquer, M., Duval, J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistantKlebsiella pneumoniae. Lancet ii (1987) 302–306.

    Google Scholar 

  20. Thabaut, A., Acar, J., Arlet, G., Berardi-Grassias, L., Bergogne-Bérézin, E., Brun, Y., Buisson, Y., Chabanon, G., Cluzel, R., Courtieu, A., Dabernat, H., Duval, J., Fleurette, J., Ghnassia, J. C., Jarlier, V., Meyran, M., Monteil, H., Petithory, J. C., Philippon, A., Sedallian, A., Sirot, J., Viot, M., Werneburg, B. Sensibilité dePseudomonas aeruginosa et des Klebsiella à la ceftazidime. Presse Méd. 17 (1988) 1895–1899.

    Google Scholar 

  21. Brun-Buisson, C., Legrand, P., Raus, A., Richard, C., Montravers, F., Besbes, M., Meakins, J. L., Soussy, C. J., Lemaire, F. Intestinal decontamination for control of nosocomial multiresistant gramnegative bacilli. Ann. Intern. Med. 110 (1989) 873–881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Symposium 2nd Biennial Conference on Chemotherapy of Infectious Diseases and Malignancies, Montreux, March 5th–8th, 1989.

Supported by Pfizer GmbH, Karlsruhe, FR Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauernfeind, A. Perspectives of beta-lactamases inhibitors in therapy of infections caused by Escherichia coli or Klebsiella with plasmidic resistance to third generation cephalosporins. Infection 18, 48–52 (1990). https://doi.org/10.1007/BF01644185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644185

Keywords

Navigation