Skip to main content
Log in

Sex determination of forensic samples: co-amplification and simultaneous detection of a Y-specific and an X-specific DNA sequence

  • Original Articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

The detection of restriction fragment length polymorphisms (RFLP) (1) in DNA extracted from forensic samples remains impossible in a significant number of cases due to deterioration and contamination of the biological material and the extremely low quantities of DNA isolated. The polymerase chain reaction (PCR) is a recent and particularly convenient method for analysing and typing very small amounts (10–20ng) of degraded human DNA (2, 3). DNA analysis at the level of a few cells present in forensic samples such as bloodstains, semen stains, vaginal swabs and head hair bulbs now appears possible using DNA amplification. A PCR protocol [4, 5] was adapted to simultaneously amplifiy a Y-specific DNA repeat sequence from the DYZ1 locus [6] and an X-specific DNA repeat sequence from the DXS424 locus [7]. The co-amplified Y-specific DNA fragment (102 bp) and X-specific DNA fragments (181–199 bp) were visualized on an ethidium bromide-stained 4% agarose gel. The male or female type of the amplified DNA extracted from blood samples, bloodstains, semen stains, vaginal swabs, brain tissue and 1, 2, 5, or 10 head hair bulbs was determined.

Zusammenfassung

Der Nachweis von Restriktionsfragmentlängen-Polymorphismen (RFLP's) (1) aus DNA, welche von forensischen Proben extrahiert wurden, bleibt häufig unmöglich wegen Verschlechterung, Kontamination des biologischen Materials and extrem geringer Mengen, welche isoliert werden können. Die Polymerase-Kettenreaktion (PCR) ist eine neue und ganz besonders geeignete Methode, um sehr kleine Mengen (10–20 ng) degradierter DNA zu analysieren und zu typisieren (2, 3). DNA-Analysen auf der Ebene weniger Zellen in forensischen Proben wie Blutspuren, Samenspuren, Scheidenabstrichen und Haarwurzeln erscheint nunmehr möglich mit Hilfe der DNA-Amplifikation. Ein PCR-Protokoll (4, 5) wurde adaptiert, um gleichzeitig eine Y-spezifische DNA-Sequenz vom DYZ1-Locus (6) und eine X-spezifische DNA-Sequenz vom DXS424-Locus (7) zu amplifizieren. Das co-amplifizierte y-spezifische DNA-Fragment (102 Bp) und das X-spezifische DNA-Fragment (181-199 Bp) wurden mit einem Ethidiumbromid gefärbten 4% igen Agarosegel sichtbar gemacht. Der männliche oder weibliche Typ der amplifizierten DNA, welche von Blutproben, Blutspuren, Spermaspuren, Vaginalabstrichen, Hirngewebe und 1, 2, 5 oder 10 Haarwurzeln extrahiert worden war, wurde bestimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73

    Google Scholar 

  2. Higuchi R, von Beroldingen CH, Sensabaugh GF, Erlich HA (1988) DNA typing from single hairs. Nature 332:543–546

    Google Scholar 

  3. Hochmeister MN, Budowle B, Jung J, Borer UV, Comey CT, Dirnhofer R (1991) PCR-based typing of DNA extracted from cigarette butts. Int J Leg Med 104:229–233

    Google Scholar 

  4. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Google Scholar 

  5. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Google Scholar 

  6. Nakahori Y, Mitani K, Yamada M, Nakagome Y (1986) A human Y-chromosome specific repeated DNA family (DYZI) consists of a tandem array of pentanucleotides. Nucleic Acids Res 14:7569–7580

    Google Scholar 

  7. Luty JA, Guo Z, Willard HF, Ledbetter DH, Ledbetter S, Litt M (1990) Five polymorphic microsatellite VNTRs on the human X chromosome. Am J Hum Genet 46:776–783

    Google Scholar 

  8. Saiki R, Bugawan T, Horn G, Mullis K, Erlich H (t1986) Analysis of enzymatically amplified B-globin and HLA-DQ. Alpha DNA with allele specifc oligonucleotide probe. Nature 324:163–166

    Google Scholar 

  9. Boerwinkle E, Xiong W, Fourest E, Chan L (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3' hypervariable region. Proc Natl Acad Sci USA 86:212–216

    Google Scholar 

  10. Budowle B, Chakraborty R, Giusti A, Eisenberg A, Allen R (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144

    Google Scholar 

  11. Wong Z, Wilson V, Patel I, Povery S, Jeffreys AJ (1987) Characterisation of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–288

    Google Scholar 

  12. Gill P (1987) A new method for sex determination of the donors of forensic samples using a recombinant DNA probe. Electrophoresis 8:35–38

    Google Scholar 

  13. Fukuschima H, Hasekura H, Nagai K (1988) Identification of male bloodstains by the dot blot hybridization of human Y chromosome-specific deoxyribonucleic acid (DNA) probe. J Forensic Sci 33:621–627

    Google Scholar 

  14. Fattorini P, Caccio S, Gustincich S, Wolfe J, Altamura BM, Graziosi G (1991) Sex determination and species exclusion in forensic samples with probe CY97. Int J Leg Med 104:247–250

    Google Scholar 

  15. Kobayashi R, Nakauchi H, Nakahori Y, Nakagome Y, Matsuzawa, S (1988) Sex identification in fresh blood and dried bloodstains by a nonisotopic deoxyribonucleic acid (DNA) analyzing technique. J Forensic Sci 3:613–620

    Google Scholar 

  16. Kobayashi R, Matsuzawa S (1989) Sex determination of bloodstains by the use of a ribonucleic acid (RNA) probe. J Forensic Sci 5:1078–1081

    Google Scholar 

  17. Ludes B, Mangin P, Chaumont AJ (1991) Stability of DNA in brain cortex after long post mortem periods. In: Berghaus G, Brinkmann B, Rittner C, Staak M (eds) DNA-technology and its forensic application. Springer, Berlin Heidelberg New York, pp 187–191

    Google Scholar 

  18. Gill P, Lygo JE, Fowler SJ, Werrett DJ (1985) Forensic application of DNA “fingerprints”. Nature 318:577–579

    Google Scholar 

  19. Giusti A, Baird M, Pasquale S, Balazs I, Glassberg J (1986) Application of deoxyribonucleic acid (DNA) polymorphisms to the analysis of DNA recovered from sperm. J Forensic Sci 31:409–417

    Google Scholar 

  20. Lo YMD, Patel P, Wainscoat JS, San Pietro M, Gillmer MDG, Fleming KA (1989) Prenatal sex determination by DNA amplification from materal peripheral blood. Lancet II:1363–1365

    Google Scholar 

  21. Pascal O, Aubert D, Gilbert E, Moisan JP (1991) Sexing of forensic samples using PCR. Int J Leg Med 104:205–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfitzinger, H., Ludes, B. & Mangin, P. Sex determination of forensic samples: co-amplification and simultaneous detection of a Y-specific and an X-specific DNA sequence. Int J Leg Med 105, 213–216 (1993). https://doi.org/10.1007/BF01642796

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01642796

Key words

Schlüsselwörter

Navigation