Skip to main content
Log in

Hemmstoffe des Folsäure-Stoffwechsels

Inhibitors of folic acid metabolism

  • Published:
Infection Aims and scope Submit manuscript

Zusammenfassung

Anders als die Antibiotika-Forschung steht die Erforschung des Folsäure-Stoffwechsels und der Folsäure-Antagonisten ganz in der klassischen aufPaul Ehrlich zurückgehenden Tradition der Chemotherapie. Mit der Aufklärung des Wirkungsmechanismus der Sulfonamide wurde eine wichtige Voraussetzung zum Verständnis der Biosynthese der Folsäure geschaffen. Die Synthese von Inhibitoren der Dihydrofolat-Reduktase orientierte sich einerseits an der Struktur der Dihydrofolsäure selbst, andererseits an der Tatsache, daß diese Substanz für bestimmte Bakterien einen lebenswichtigen Wuchsstoff darstellt. Beide Arbeitsrichtungen führten zu wirksamen und therapeutisch verwendbaren Verbindungen. Die Mechanismen der Selektivität der Folsäure-Antagonisten werden geschildert. Ebenso werden die biochemischen und genetischen Grundlagen der Resistenz gegen Folsäure-Antagonisten beschrieben. Die Erforschung des Folsäure-Stoffwechsels und der Folsäure-Antagonisten liefert ein eindrucksvolles Beispiel für die erfolgreiche Wechselwirkung zwischen einer mechanistisch inspirierten biochemischen und chemischen Methodik einerseits und einer sich an komplexeren biologischen Phänomenen orientierenden empirischen Arbeitsweise andererseits.

Summary

In contrast to antibiotic research, the study of folic acid metabolism and folic acid antagonists is conducted in the classical tradition of chemotherapy established byPaul Ehrlich. The elucidation of the mechanism of action of sulphonamides created an important prerequisite for the understanding of the biosynthesis of folic acid. The synthesis of inhibitors of dihydrofolate-reductase was guided on the one hand by the structure of dihydrofolate itself, and on the other hand by the fact that this substance is essential for the growth of certain bacteria. Both approaches led to the synthesis of compounds which were effective and could be used therapeutically. The mechanism of selectivity of folic acid antagonists is described. A short account of the biochemical and genetic basis of resistance to folic acid antagonists is also given. The study of folic acid metabolism and folic acid antagonists provides a good example of the successful interaction of mechanistically inspired biochemical and chemical methods on the one hand, and an empirical approach characterised by the study of more complex biological phenomena on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch. Med. Wschr. 61 (1935) 250–253.

    Article  CAS  Google Scholar 

  2. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., Jr., Wolff, J. A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238 (1948) 787–793.

    Article  CAS  PubMed  Google Scholar 

  3. Angier, R. B., Boothe, J. H., Hutchings, B. L., Mowat, J. H., Semb, J., Stockstad, E. L. R., Subbarow, Y., Waller, C. W., Cosulich, D. B., Fahrenbach, M. J., Hultwuist, M. E., Kuh, E., Northey, E. H., Seeger, D. R., Sickels, J. P., Smith, J. M. Jr. The structure and synthesis of the liverL. casei factor. Science 103 (1947) 667–669.

    Article  Google Scholar 

  4. Ehrlich, P. Gesammelte Arbeiten. Springer, Berlin 1957.

    Google Scholar 

  5. Tréfouël, J., Tréfouël, J., Nitti, F., Bovet, D. Activié du p-aminophénylsulfamide sur les infections streptococciques expérimentales de la souris et du lapin. C. R. Soc. Biol. (Paris) 120 (1935) 756–758.

    Google Scholar 

  6. Colebrook, L., Buttle, G. A. H., O'Meara, R. A. Q. The mode of action of p-aminobenzenesulphonamide and prontosil in haemolytic streptococcal infections. Lancet II (1936) 1323–1326.

    Article  CAS  Google Scholar 

  7. Woods, D. D. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br. J. Exp. Pathol. 21 (1940) 74–90.

    PubMed Central  CAS  Google Scholar 

  8. Mitchell, H. K., Snell, E. E., Williams, R. J. The concentration of „folic acid“. J. Am. Chem. Soc. 63 (1941) 2284.

    Article  CAS  Google Scholar 

  9. Korte, F., Rangachari, P. N., Scharf, H.-D. Die Folsäuregruppe. In:Ammon, R., Dirscherl, W. (Hrsg.): Fermente — Hormone — Vitamine und die Beziehungen dieser Wirkstoffe zueinander. Band III/1. Georg Thieme, Stuttgart 1974, S. 808–835.

    Google Scholar 

  10. Brown, G. M., Weisman, R. A., Molnar, D. A. The biosynthesis of folic acid. I. Substrate and cofactor requirements for enzymatic synthesis by cell-free extracts ofEscherichia coli. J. Biol. Chem. 236 (1961) 2534–2543.

    CAS  Google Scholar 

  11. Bock, L., Miller, G. H., Schaper, K.-J., Seidel, J. K. Sulfonamide structure-activity relationships in a cell-free system. 2. Proof for the formation of a sulfonamide containing folate analog. J. Med. Chem. 17 (1974) 23–28.

    Article  CAS  PubMed  Google Scholar 

  12. Hitchings, G. H., Falco, E. A., Vanderwerff, H., Russell, P. B., Elion, G. B. Antagonists of nucleic acid derivatives. VII. 2,4-Diaminopyrimidines. J. Biol. Chem. 199 (1952) 43–56.

    PubMed  CAS  Google Scholar 

  13. Hertz, R., Lewis, J., Lippsett, M. B. 5 years experience with the chemotherapy of metastatic choriocarcinoma and related trophoblastic tumors in women. Am. J. Obstet. Gynec. 82 (1961) 631–640.

    Article  CAS  PubMed  Google Scholar 

  14. Burchall, J. J., Hitchings, G. H. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol. Pharmacol. 1 (1965) 126–136.

    PubMed  CAS  Google Scholar 

  15. Hitchings, G. H., Burchall, J. J., Ferone, R. The comparative enzymology of dihydrofolate reductase and the design of chemotherapeutic agents. In: Biochemical Studies of Antimicrobial Drugs. 16th Symposium of the Society for General Microbiology, London 1966. University Press, Cambridge 1966, S. 294–300.

    Google Scholar 

  16. Burchall, J. J. Enzyme inhibitors as antimicrobial agents. In:Drews, J., Hahn, F. E. (Hrsg.): Topics in infectious diseases. Vol. 1: Drug receptor interactions in antimicrobial chemotherapy. Springer, Wien-New York 1975, S. 285–293.

    Google Scholar 

  17. Bertino, J. R. Folate antagonists. In:Sartorelli, A. C., Johns, D. G. (Hrsg.): Handbook of experimental pharmacology XXXVIII/2. Antineoplastic and immunosuppressive agents Part II. Springer, Berlin-Heidelberg-New York 1975, S. 468–483.

    Chapter  Google Scholar 

  18. Ensminger, W. D., Grindey, G. B., Hoglind, J. A. Antifolate therapy. Rescue, selective host protection, and drug combinations. In:Rosowsky, A. (Hrsg.): Advances in cancer chemotherapy Vol. 1. Marcel Dekker Inc., New York-Basel, 1979, S. 61–109.

    Google Scholar 

  19. Burchenal, J. H., Rabcock, G. M. Prevention of toxicity of massive doses of amethopterin by citrovorum factor. Proc. Soc. Exp. Biol. 76 (1951) 382–384.

    Article  CAS  PubMed  Google Scholar 

  20. Finland, M., Kass, E. H. Conference on trimethoprim-sulfamethoxazole. Summary and comments on the conference. J. Infect. Dis. 128 Suppl. (1973) S 792-S 816.

    Article  Google Scholar 

  21. Greenberg, J., Richeson, E. M. Effect of 2,4-diamino-5-(p-chlorophenoxy)-6-methylpyrimidine and 2,4-diamino-6,7-diphenylpteridine on chlorguanide-resistant strain ofPlasmodium gallinaceum. Proc. Soc. Exp. Biol. 77 (1951) 174–176.

    Article  CAS  PubMed  Google Scholar 

  22. Bushby, S. R. M., Hitchings, G. H. Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother. 33 (1968) 72–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huovinen, P., Toivanen, P. Trimethoprim resistance in Finland after five years' use of plain trimethoprim. Br. Med. J. 280 (1980) 72–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Black, M. L. Sequential blockage as a theoretical basis for drug synergism. J. Med. Chem. 6 (1963) 145–153.

    Article  CAS  PubMed  Google Scholar 

  25. Bertino, J. R., Skeel, R. T. Resistance to chemotherapeutic agents: Clinical aspects. Proc. 5th Int. Congress Pharmacology 3 (1973) 376–392.

    Google Scholar 

  26. Hrynink, W. M., Bertino, J. R. The treatment of leukemia with large doses of methotrexate and folinic acid: Clinical-biochemical correlates. J. Clin. Invest. 48 (1969) 2140–2155.

    Article  Google Scholar 

  27. Sirotnak, F. M., Donati, G. J., Hutchison, D. J. Evidence for a genetic alteration of dihydrofolate reductase associated with amethopterin resistance inDiplococcus pneumoniae. Biochem. Biophys. Res. Commun. 14 (1964) 292–295.

    Article  CAS  PubMed  Google Scholar 

  28. Amyes, S. G. B., Smith, J. T. R-Factor trimethoprim resistance mechanism: An insusceptible target site. Biochem. Biophys. Res. Commun. 58 (1974) 412–418.

    Article  CAS  PubMed  Google Scholar 

  29. Sköld, O., Widh, A. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J. Biol. Chem. 249 (1974) 4324–4325.

    PubMed  Google Scholar 

  30. Wise, E. M., Jr., Abou-Donia, M. M. Sulfonamide resistance mechanism inEscherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. U.S.A. 72 (1975) 2621–2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drews, J. Hemmstoffe des Folsäure-Stoffwechsels. Infection 8 (Suppl 3), S268–S275 (1980). https://doi.org/10.1007/BF01639593

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01639593

Navigation