Skip to main content
Log in

Parameters of acquired resistance and their role in the evaluation of new chemotherapeutic drugs

Die Beurteilung der erworbenen Resistenz und ihre Bedeutung für die Bewertung neuer Chemotherapeutika

  • Übersicht
  • Published:
Infection Aims and scope Submit manuscript

Summary

Acquired resistance can be defined as a qualitative alteration of the genetic material of a cell which is phenotypically correlated with a measurable decrease of the cell's sensitivity against one or several chemotherapeutic agents. There are two basic genetic mechanisms which can lead to the emergence of resistance: mutation and the acquisition of additional genetic material from another cell. Both forms of resistance play an important role in clinical situations: the emergence of resistance by mutation occurs in tumor cells and can also lead to therapeutic problems in antimicrobial chemotherapy. In bacteria, however, acquisition of resistance plasmids represents the dominating mechanism which is responsible for most therapeutic problems in the clinical environment. The different genetic mechanisms involved in the emergence of resistance are paralleled — at least in bacteria — by two principally different groups of biochemical mechanisms implementing resistance. Mutations lead to alterations of single cell constituents such as the cell membrane or cellular receptors necessary for the binding of the antimicrobial agent. This form of resistance is biochemically characterized by the inaccessibility of the cell interior for a particular compound or by the modification of an intracellular binding site which loses its affinity for the chemotherapeutic agent. Resistance plasmids on the other hand code for enzymes which inactivate the antibiotic (β-lactamases, aminoglycoside-inactivating enzymes, chloramphenicol-acetyltransferase). In some cases, they direct the synthesis of proteins which affect cell permeability (tetracycline) or isoenzymes which have a lower affinity for the inhibitor (trimethoprim). Resistance against antibiotics can be inducible. In these cases the regulatory mechanisms involved are stable genetical traits as resistance itself. Using chloramphenicol, β-lactam-antibiotics and aminoglycosides as examples, it is demonstrated that resistance data gathered early in the development of a new drug are of little value in estimating the clinical potential of a new compound. Information on the rate at which resistance develops, on the pattern according to which it emerges (“single step” or “multi step”) and on cross-resistance patterns is important in the characterization of a new drug but is often invalidated by later findings obtained in the clinical environment. The problem appears somewhat simpler if a new drug is a member of an already known class of compounds, e.g. a β-lactam or an aminoglycoside. In such cases our knowledge of frequent enzymatic inactivation mechanisms provides a basis not only for the evaluation of an existing drug, but also for the synthesis of new derivatives.

Zusammenfassung

Das Problem der Resistenz von Mikroorganismen gegen antiparasitäre Wirkstoffe ist etwa so alt wie die Chemotherapie selbst. Erworbene Resistenz wurde jedoch erst in den Jahren von 1945 bis 1955 als das Ergebnis eines nicht gerichteten genetischen Prozesses erkannt. Bakterien können Resistenz gegen antimikrobielle Wirkstoffe auf zwei grundsätzlich verschiedenen Wegen erwerben: einmal durch Mutation, das heißt, durch eine qualitativ definierbare Änderung des in der Zelle vorhandenen genetischen Materials und zweitens durch den Hinzugewinn neuer genetischer Information von außen. Beide Formen der Resistenz haben in klinischen Situationen Bedeutung: Resistenzentstehung durch Mutation spielt eine wichtige Rolle in der Onkologie und ist zuweilen auch Ursache von klinisch beobachteten Resistenzen in der antimikrobiellen Chemotherapie. Für den Bereich der antibakteriellen Chemotherapie ist allerdings die Übertragung und der Besitz von Resistenzplasmiden der epidemiologisch wichtigere Mechanismus der Resistenzentstehung. Den verschiedenen genetischen Mechanismen, die zur Ausbildung von Resistenz gegen Chemotherapeutika führen können, entsprechen — zumindest in Bakterien — auch zwei grundsätzlich voneinander verschiedene biochemische Mechanismen. Mutationen führen zu Veränderungen einzelner Zellbestandteile, die dazu führen, daß ein Wirkstoff nicht mehr in das Zellinnere gelangt oder daß ein Rezeptor, mit dem der Wirkstoff vorher reagieren konnte, diesen nicht mehr mit der vorher gezeigten Affinität bindet. Hingegen codieren Resistenzplasmide für Proteine, die bis dahin in der Zelle nicht vorhanden waren. Hier handelt es sich meistens um Enzyme, die Antibiotika inaktivieren können (β-Lactamasen, Aminoglycosidinaktivierende Enzyme) oder um Proteine, die die Zellpermeabilität beeinflussen, gelegentlich aber auch um neue Enzyme, die es der Zelle ermöglichen, einen biosynthetischen Block zu umgehen (Beispiel: Trimethoprim). Häufig sind Antibiotikainaktivierende Enzyme induzierbar: sie werden dann nicht ständig synthetisiert, sondern nur in Gegenwart des zu inaktivierenden Antibiotikums. Der regulatorische Mechanismus, der die An-und Abschaltung derartiger Enzymsynthesen ermöglicht, ist ebenso ein vererbbares genetisches Merkmal wie die Resistenz selbst. Im letzten Abschnitt der Arbeit wird auf die Bedeutung von Resistenzparametern für die Beurteilung neuer Chemotherapeutika eingegangen. An den Beispielen Chloramphenicol, β-Lactam-Antibiotika und Aminoglycoside wird gezeigt, daß frühe auf Laborexperimenten beruhende Aussagen über die Schnelligkeit und den Typ der Resistenzentstehung („single step“ oder „multi step“) sowie über Kreuzresistenzmuster meist nicht den später in der Klinik angetroffenen Verhältnissen entsprechen. Obwohl solche Laboratoriumsdaten zur Charakterisierung einer neuen Verbindung gehören, sind sie zur Beurteilung des klinischen Wertes einer neuen Verbindung kaum brauchbar. Ob Resistenzparameter die Verwendung eines Chemotherapeutikums in der Klinik einschränken können und welche Mechanismen dabei epidemiologisch dominieren, läßt sich meist erst nach längerer klinischer Anwendung eines neuen Wirkstoffes beurteilen. Etwas einfacher liegen die Verhältnisse allerdings, wenn es sich bei einem neuen Wirkstoff um einen Vertreter einer bereits bekannten und klinisch breit eingesetzten Substanzgruppe handelt, etwa um ein β-Lactam oder um Aminoglycoside. In diesem Zusammenhang wird auf bekannte, epidemiologisch wichtige Inaktivierungsmechanismen hingewiesen und auf chemische Manipulationen, die geeignet sind, solchen Mechanismen auszuweichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Ehrlich, P. Die Grundlagen der experimentellen Chemotherapie. Z. angew. Chem. 23 (1910) 2–8.

    Google Scholar 

  2. Ehrlich, P. Chemotherapeutics: scientific principles, methods and results. Lancet (1913/14) 445–451.

    Google Scholar 

  3. Lamarck, J. B., de Monet, P.: Philosophie Zoologique. Paris 1809.

  4. Hinshelwood, C. N. The chemical kinetics of the bacterial cell. Oxford University Press, London 1946.

    Google Scholar 

  5. Luria, S. E., Delbrück, M. Mutations in bacteria from virus sensitivity to virus resistance. Genetics 28 (1943) 491–511.

    Google Scholar 

  6. Newcombe, H. B. Origin of bacterial variants. Nature 164 (1949) 150–151.

    Google Scholar 

  7. Lederberg, J., Lederberg, E. M. Replica plating and indirect selection of bacterial mutants. J. Bact.63 (1952) 399–406.

    Google Scholar 

  8. Lederberg, J., Tatum, E. M. Gene recombination in E. coli. Nature 158 (1946) 558–559.

    Google Scholar 

  9. Demerec, M. Genetic aspects of drug resistance. In: Drug resistance in microorganisms, Ciba Foundation Symposium, p. 47–58. Little, Brown, Boston 1957.

    Google Scholar 

  10. Adam, D. Interaction of antibiotics with host factors. In: Nonspecific factors influencing host resistance (Ed.:W. Braun, J. Ungar), pp. 457–458. Karger, Basel 1973.

    Google Scholar 

  11. Funatsu, G., Wittmann, H. G. Location of amino acid replacements in protein S 12 isolated from E. coli mutants resistant to streptomycin. J. molec. Biol. 68 (1972) 547–550.

    Google Scholar 

  12. Davies, J., Nomura, M. The genetics of bacterial ribosomes. Ann. Rev. Gen. 6 (1972) 203–234.

    Google Scholar 

  13. Pitton, J. S. Mechanisms of bacterial resistance to antibiotics. Ergebn. Physiol. 65 (1972) 17–93.

    Google Scholar 

  14. Beneviste, R., Davies, J. Mechanisms of antibiotic resistance in bacteria. Ann. Rev. Biochem. 42 (1973) 471–506.

    Google Scholar 

  15. Bockrash, R. C., Carlson, K., Bender, P. An unsuccessful search for amber streptomycin resistant or dependent mutants in E. coli. Microbiol. gen. Bull.31 (1969) 12–13.

    Google Scholar 

  16. Anderson, E. S. The ecological significance of R-factor activity. In: Topics in infections diseases (Ed.:Drews, J., Hahn, F. E.), pp. 59–76. Springer, Wien-New York 1975.

    Google Scholar 

  17. Clowes, R. C. Molecular structure of bacterial plasmids. Bact. Rev. 36 (1972) 361–405.

    Google Scholar 

  18. Mitsuhashi, S., Iyobe, S., Inoue, M. Genetic of R-factors. Antibiot. et Chemother. 20 (1976) 133–174.

    Google Scholar 

  19. Levy, S. B., McMurray, L. Detection of an inducible membrane protein associated with R-factor-mediated tetracycline resistance. Biochem. biophys. Res. Commun. 56 (1974) 1060–1068.

    Google Scholar 

  20. Franklin, T. J., Foster, S. J. Effect of osmotic shock on tetracycline resistance in E. coli bearing an R-factor. Biochem. J. 121 (1971) 287–292.

    Google Scholar 

  21. Fleming, M. P., Datta, N., Grüneberg, R. N. Trimethoprim resistance determined by R-factors. Brit. med. J. (1972/1) 726–728.

    Google Scholar 

  22. Datta, N., Hedges, R. W. Trimethoprim resistance conferred by W plasmids in enterobacteriaceae. J. gen. Microbiol. 72 (1972) 349–355.

    Google Scholar 

  23. Amyes, S. G., Smith, J. T. R-factor trimethroprim resistance mechanism: an insusceptible target site. Biochem. biophys. Res. Commun. 58 (1974) 412–418.

    Google Scholar 

  24. Anderson, E. S. The ecology of transferable drug resistance in the enterobacteria. Ann. Rev. Microbiol. 22 (1968) 131–180.

    Google Scholar 

  25. Anderson, E. S., Natkin, E. Transduction of resistance determinants and R-factors of the Δ transfer system by phage Plkc. Mol. gen. Genet. 114 (1972) 261–265.

    Google Scholar 

  26. Rutman, R. J., Chun, E. H. L., Lewis, F. S. Permeability difference as a source of resistance to alkylating agents in Ehrlich tumor cells. Biochem. biophys. Res. Commun. 32 (1968) 650–657.

    Google Scholar 

  27. Goldstein, M. N., Hamm, K., Amrod, E. Incorporation of tritiated actinomycin D into drug-sensitive and drug-resistant HeLa cells. Science 151 (1966) 1155–1156.

    Google Scholar 

  28. Pato, M. L., Brown, G. M. Mechanisms of resistance in E. coli to sulfonamide. Arch. biochem. Biophys. 103 (1963) 443–448.

    Google Scholar 

  29. Bertino, J. R., Hryniuk, W. M., Capizzi, R. In: Prediction or response in cancer chemotherapy. (Ed.:Hall, T. C.), p. 170. US Government Printing Office, Washington, D.C. 1971.

    Google Scholar 

  30. Tanaka, K., Teraoka, H., Tamaki, M., Takata, R., Osawa, S. Phenotypes represented by a mutational change in a 50 S ribosomal protein component, 50–8, in E. coli. Mo. gen. Genet. 114 (1971) 9–13.

    Google Scholar 

  31. Drews, J., Georgopoulos, A., Laber, G., Schütze, G., Unger, J. Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob. Ag. Chemother. 7 (1975) 507–516.

    Google Scholar 

  32. Bollen, A., Helser, T., Yamada, T., Davies, J. Altered ribosomes in antibiotic-resistant mutants of E. coli. Cold Spr. Harb. Symp. quant. Biol. 34 (1969) 95–100.

    Google Scholar 

  33. Brockmann, R. W. A mechanism of resistance to 6-mercaptopurine: metabolism of hypoxanthine and 6-mercaptopurine by sensitive and resistant neoplasms. Cancer Res. 20 (1960) 643–653.

    Google Scholar 

  34. Reyes, P., Hall, T. C. Synthesis of 5-fluorouridine 5'phosphate by a pyrimidine phosphoribosyltransferase of mammalian origin. II. Correlation between the tumor levels of the enzyme and the 5-fluorouracil-promoted increase in survival of tumor-bearing mice. Biochem. Pharmacol. 18 (1969) 2587–2590.

    Google Scholar 

  35. Richmond, M. H., Jack, G. W., Sykes, R. B. The β-lactamases of gramnegative bacteria including Pseudomonads. Ann. N. Y. Acad. Sci. 182 (1972) 243–257.

    Google Scholar 

  36. Steuart, C. D., Burke, P. J. Cytidine deaminase and the development of resistance to arabinosyl-cytosine. Nature (New Biol.) 233 (1971) 109–110.

    Google Scholar 

  37. Wolpert, M. K., Ruddon, R. W. A study on the mechanism of resistance to nitrogen mustard (HN2) in Ehrlich ascites tumor cells: comparison of uptake of HN2-14-C into sensitive and resistant cells. Cancer Res. 29 (1969) 873–879.

    Google Scholar 

  38. Hirschberg, E., Kream, J., Gellhorn, A. Enzymatic deamination of 8-azaguanine in normal and neoplastic tissues. Cancer Res. 12 (1952) 524–528.

    Google Scholar 

  39. Smith, J. T.: Personal communication, 1975.

  40. Connamacher, R. H. Inducible bacterial resistance. In: Antibiotics and Chemotherapy (Ed.:Hahn, F. E.) pp. 8–66. Karger, Basel 1976.

    Google Scholar 

  41. Chabbert, Y. A., Baudens, B. G., Gerbaud, G. R. Variations sous l'influence de l'acriflavine et traduction de la resistance à la kanamycine et au chloramphenicol chez des Staphylocoques. Ann. Inst. Pasteur 91 (1959) 225–230.

    Google Scholar 

  42. Dunsmore, C. L., Pim, K. L., Sherris, J. C. Observations on the inactivation of chloramphenicol by chloramphenicol-resistant staphylococci. Antimicrob. Ag. Chemother. 3 (1963) 500–506.

    Google Scholar 

  43. Kono, M., Kasuga, T., Mitsuhashi, J. Drug resistance of staphylococci. IV. Resistance patterns of some macrolide antibiotics in Staph. aureus isolated in the United States. Jap. J. Microbiol. 10 (1966) 109–113.

    Google Scholar 

  44. Inoue, M., Hashimoto, H., Mitsuhashi, S. Mechanisms of tetracycline resistance in Staph. aureus. I. Inducible resistance to tetracycline. J. Antibiotics (Tokyo) 23 (1970) 68–74.

    Google Scholar 

  45. Izaki, K., Kiuchi, K., Arima, K. Specificity and mechanisms of tetracycline resistance in a multiple drug resistant strain of E. coli. J. Bact. 91 (1966) 628–633.

    Google Scholar 

  46. Dean, A. C., Giordan, B. L. The development of resistance of Bact. lactis aerogenes. II. Production of highly resistant strains in nonselective conditions. Proc. roy. Soc. Bact. 153 (1961) 329–338.

    Google Scholar 

  47. Franklin, T. J., Rownd, R. R-factor mediated resistance to tetracycline in Proteus mirabilis. J. Bact. 115 (1973) 235–242.

    Google Scholar 

  48. Barber, J. The incidence of penicillin sensitive variant colonies in penicillinase-producing strains of Staph. pyogenes. J. gen. Microbiol. 3 (1949) 274–281.

    Google Scholar 

  49. Harmon, J. A., Baldwin, J. N. Nature of the determinant controlling penicillinase production in Staphylococcus aureus. J. Bact. 87 (1964) 593–597.

    Google Scholar 

  50. Novick, R. P., Richmond, M. H. Nature and interactions of the genetic elements governing penicillinase synthesis in Staphylococcus aureus. J. Bact. 90 (1965) 467–480.

    Google Scholar 

  51. Sabath, L., Jago, J., Abraham, E. P. Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea. Biochem. J. 96 (1965) 739–752.

    Google Scholar 

  52. Jacob, F., Monod, J. On the regulation of gene activity. Cold Spr. Harb. Symp. quant. Biol. 26 (1961) 193–211.

    Google Scholar 

  53. Imsande, J., Zyskind, J. W., Mile, I. Regulation of staphylococcal penicillinase synthesis. J. Bact. 109 (1972) 122–133.

    Google Scholar 

  54. Dunsmore, C. L., Pim, K. L., Sherris, J. C. Observations on the inactivation of chloramphenicol-resistant Staphylococci. Antimicrob. Ag. Chemother. 3 (1963) 500–506.

    Google Scholar 

  55. Mitsuhashi, S. Drug action and drug resistance in bacteria. 2. Aminoglycoside antibiotics. University Park Press, Baltimore 1975.

    Google Scholar 

  56. Doyle, F. P., Nayler, M. P. The biochemistry and function of β-lactamase. Advanc. Enzymol. 28 (1966) 237–321.

    Google Scholar 

  57. Neu, H. C., Winshell, E. B. In vitro studies of cephanone, a 3-heterocyclic thio-methyl cephalosporin derivative. J. Antibiot. (Tokyo) 26 (1973) 153–156.

    Google Scholar 

  58. Neu, H. C. Cefamandole, a cephalosporin antibotic with an unusually wide spectrum of activity. Antimicrob. Ag. Chemother. 6 (1974) 177–182.

    Google Scholar 

  59. Daoust, D. R., Onishi, H. R., Warrick, H., Handlin, D., Stapley, E. O. Chephalomycins a new family of β-lactam antibiotics: antibacterial activity and resistance to β-lactamase degredation. Antimicrob. Ag. Chemother. 3 (1973) 254–261.

    Google Scholar 

  60. Neu, H. C. Cefoxitin, a semisynthetic cephamycin antibiotic: resistance to β-lactamase inactivation. Antimicrob. Ag. Chemother. 6 (1974) 170–176.

    Google Scholar 

  61. Stöffler, G., Tischendorf, G. W. Antibiotic receptor-sites in Escherichia coli ribosomes. In: Topics in infectious diseases. Drug receptor interactions in antimicrobial chemotherapy (Ed.:Drews, J., Hahn, F.), pp. 117–143. Springer, Wien-New York 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drews, J. Parameters of acquired resistance and their role in the evaluation of new chemotherapeutic drugs. Infection 4, 61–69 (1976). https://doi.org/10.1007/BF01638718

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638718

Keywords

Navigation