Skip to main content
Log in

Characteristics of heat transfer between particles and fluid in aggregative fluidized bed

Wärmeübertragung zwischen Teilchen und Fluid im Fließbett

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Measurements are made on the heat-transfer coefficients between particles and fluid in the aggregative fluidized bed. In order to evaluate the heat-transfer coefficients, a proposed model takes into account of the variation of the particles-temperature and the fluid-temperature distributions throughout the bed is developped on the basis of an experimental investigation of the fluidizing behavior. The heat-transfer coefficients obtained by conforming the outlet-air temperature profile to be predicted with the one measured are found to be varied significantly depending on the static bed height, as well as particle diameter and fluid velocity.

Zusammenfassung

Wärmeübertragungskoeffizienten zwischen Teilchen und Fluid im Fließbett wurden gemessen. Das benutzte Rechenmodell berücksichtigte die Änderung der Teilchentemperatur und der Fluidtemperaturverteilung im Bett, wie sie aus den Versuchen ermittelt wurden. Die Wärmeübergangskoeffizienten, die durch Anpassung der Austrittstemperaturverteilung an die gemessenen Werte erhalten wurden, ändern sich stark mit der statischen Betthöhe, ebenso mit dem Teilchendurchmesser und der Fluidgeschwindigkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

surface area of particles per unit volume of bed

Cp:

specific heat

d:

diameter

g:

gravitational acceleration

hp :

heat-transfer coefficient between particles and fluid

I0 :

modified Bessel function of the first kind of zero order

L:

bed height at fluidization

Lmf :

bed height at minimum fluidization

Ls :

static bed height

n:

natural integer

Nup :

Nusselt number, hpdpf.

ΔP:

pressure difference between static pressure in bed and atmospheric pressure

Rep :

Reynolds number, Ufdpf.

t:

time

T:

temperature

Tfi :

inlet-fluid temperature

Tfo :

outlet-fluid temperature

Tfoin :

initial outlet-fluid temperature

Tpin :

initial particle temperature

Tps :

particle-surface temperature

Ub :

rise velocity of a bubble

uf :

interstitial fluid velocity

Uf :

superficial fluid velocity

Umf :

superficial fluid velocity at minimum fluidization

up :

downward particle velocity

x:

coordinate along bed distance from distributor

α:

thermal diffusivity

α′,β′,γ′:

dimensionless variables, (1+ψ)e−ψ and (-hpat/ρpCppɛf)

ψ:

dimensionless variable, hpy a(x/uf)/ρfCpfɛf

ϕ:

dimensionless variable, hpa(t-x/uf)/ρpCpp(1-ɛf)

ξ:

dimensionless variable, ψ · ϕ

η:

dimensionless variable, (-hpat)/ρpCpp(1+hpaL/ρfCPpUf)

ζ:

ratio of the volume of wake dragged upward behind a rising bubble to the volume of a bubble

δ:

volume fraction of bed consisting of bubbles

ɛf :

average voidage of the overall bed

ɛmf :

voidage at minimum fluidization

ɛfx :

voidage at a distance x in bed

ɛfafb :

local voidage in A zone and B zone, respectively

λ:

thermal conductivity

ν:

kinematic viscosity

ρ :

density

f, p:

refer to fluid and particle, respectively

References

  1. Kettering, K.N.; Manderfield, E.L.; Smith, J. M.: Heat and Mass Transfer in Fluidized System. Chem. Engng. Progr. 46 (1950) 139–145

    Google Scholar 

  2. Heertjes, P.M.; Mckibbins, S.W.: The Partial Coefficient of Heat Transfer in a Drying Fluidized Bed. Chem. Eng. Sci. 5 (1953) 161–167

    Google Scholar 

  3. Walton, J.S.; Olson, R.L.; Levenspiel, O.: Gas-Solid Film Coefficients of Heat Transfer in Fluidized Coal Beds. Ind. Engng. Chem. 44 (1952) 1474–1480

    Google Scholar 

  4. Chang, T.M.; Wen, C.Y.: Fluid-to-Particle Heat Transfer in Air Fluidized Beds. Chem. Eng. Progr. Sympo. 62 (1966) 111–118

    Google Scholar 

  5. Richardson, J.F.; Ayers, P.: Heat Transfer between Particles and a Gas in a Fluidized Bed. Trans. Inst. Chem. Engrs. 37 (1959) 314–321

    Google Scholar 

  6. Kunii, D.; Levenspiel, O.: Fluidization Engineering. pp. 216. Wiley & Toppan, 1969

  7. Wamsley, W.W.; Johanson, L.N.: Fluidized Bed Heat Transfer. Chem. Eng. Progr. 50 (1954) 347–355

    Google Scholar 

  8. Yagi, S.; Kunii, D.; Yoshida, K.: Heat Transfer between Particles and Gas in Fluidized Bed. Preprint of the 27 th Annual Meeting of The Soc. of Chem. Eng. of Japan. (1962) 138–139

  9. Rowe, P.N.: The Effect of Bubbles on Gas/Solids Contacting in Fluidized Beds. Chem. Eng. Progr. Symp. Ser. 62 (1966) 111–118

    Google Scholar 

  10. Kunii, D.; Levenspiel, O.: Bubbling Bed Model for Kinetic Process in Fluidized Beds. Ind. Engng. Chem. Proc. Design and Development 7 (1968) 481–492

    Google Scholar 

  11. Bakker, P.J.; Heertjes, P.M.: Porosity Distributions in A Fluidized Bed. Chem. Eng. Sci. 12 (1960) 260–271

    Google Scholar 

  12. Yoshida, K.; Urabe, S.; Hiraki, I.; Kunii, D.: Behavior of Particle Movement in a Fluidized Bed. Kagaku Kogaku Ronbunshu 29 (1965) 863–867

    Google Scholar 

  13. Fan, L.T.; Lee, C.J.; Baile, R.C.: Axial Solid Distribution in Gas-Solid Fluidized Beds. A.I.Ch.E. J. 8 (1962) 239–244

    Google Scholar 

  14. Gelperin, N.I.; Lebedev, P.D.; Napalkov, G.N.; Ainshtein, V.G.: Heat and Mass Transfer in a Fluidized Bed and Other Disperse System. Int. Chem. Eng. 6 (1966) 4–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, N., Fukusako, S. & Torikoshi, K. Characteristics of heat transfer between particles and fluid in aggregative fluidized bed. Wärme- und Stoffübertragung 14, 173–182 (1980). https://doi.org/10.1007/BF01637699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637699

Keywords

Navigation