Skip to main content
Log in

Gravity ideal-body analysis

  • Shorter Contributions
  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Summary

This short note contributes to the methods of computing the bounds on some properties of the source of measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. L. Parker: Best bounds on density and depth from gravity data. Geophysics, 39 (1974), 644.

    Article  Google Scholar 

  2. R. L. Parker: The theory of ideal bodies for gravity interpretation. Geophys. J. Roy. Astr. Soc., 42 (1975), 315.

    Article  Google Scholar 

  3. C. Safon, G. Vasseur, M. Cuer: Some applications of linear programming to the inverse gravity problem. Geophysics, 42 (1977), 1215.

    Article  Google Scholar 

  4. M. Cuer, R. Bayer: Fortran routines for linear inverse problems. Geophysics, 45 (1980), 1706.

    Article  Google Scholar 

  5. S. P. Huestis, M. E. Ander: IDB2- A Fortran program for computing extremal bounds in gravity data interpretation. Geophysics, 48 (1983), 999.

    Article  Google Scholar 

  6. B. P. Luyendyk: On-bottom gravity profile across the East Pacific rise at 21° north. Geophysics, 49 (1984), 2166.

    Article  Google Scholar 

  7. S. P. Huestis: Uniform norm minimization in three dimensions. Geophysics, 51 (1986), 1141.

    Article  Google Scholar 

  8. M. E. Ander, S. P. Huestis: Gravity ideal bodies. Geophysics, 52 (1987), 1265.

    Article  Google Scholar 

  9. S. P. Huestis, R. L. Parker: Bounding the thickness of the ocean magnetized layer. J. Geophys. Res., 82 (1977), 5293.

    Article  Google Scholar 

  10. S. P. Huestis: Extremal temperature bounds from surface gradient measurements. Geophys. J. Roy. Astr. Soc., 58 (1979), 249.

    Article  Google Scholar 

  11. S. P. Huestis: Temperature bounds from heat flow data on irregular non-isothermal surfaces. Geophys. J. Roy. Astr. Soc., 65 (1981), 165.

    Article  Google Scholar 

  12. S. P. Huestis: The inverse problem for heat flow data in the presence of thermal conductivity variations. Geophys. J. Roy. Astr., Soc., 78 (1984), 119.

    Article  Google Scholar 

  13. R. E. Chavez, R. C. Bailey, G. D. Garland: Joint interpretation of gravity and magnetic data over axial symmetric bodies with application to the Darnley Bay anomaly, NWT Canada. Geophys. Prosp., 35 (1987), 374.

    Article  Google Scholar 

  14. A. H. Land, S. Powell: Fortran codes for mathematical programming: linear, quadratic and discrete. John Wiley and Sons, London 1973.

    Google Scholar 

  15. J. Mrlina, J. Polanský: Západočeské proterozoikum, gravimetrické mapování 1 : 25 000, etapa II - 1986. MS Geofond Praha 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peška, P. Gravity ideal-body analysis. Stud Geophys Geod 33, 405–408 (1989). https://doi.org/10.1007/BF01637693

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637693

Keywords

Navigation