Skip to main content

History of blood gas analysis. IV. Leland Clark's oxygen electrode

Abstract

The electrochemical reduction of oxygen was discovered by Heinrich Danneel and Walther Nernst in 1897. Polarography using dropping mercury was discovered accidentally by Jaroslav Heyrovsky in Prague in 1922. This method produced the first measured oxygen tension values in plasma and blood in the 1940s. Brink, Davies, and Bronk implanted platinum electrodes in tissue to study oxygen supply, or availability, from about 1940, but these bare electrodes became poisoned when immersed in blood. Leland Clark sealed a platinum cathode in glass and covered it first with cellophane; he then tested silastic and polyethylene membranes. In 1954 Clark conceived and constructed the first membrane-covered oxygen electrode having both the anode and cathode behind a nonconductive polyethylene membrane. The limited permeability of polyethylene to oxygen reduced depletion of oxygen from the sample, making possible quantitative measurements of oxygen tension in blood, solutions, or gases. This invention led to the introduction of modern blood gas apparatus.

This is a preview of subscription content, access via your institution.

References

  1. Clark LC. Oxygen is like love. In: Huch A, Huch R, Lucey JF, eds. Continuous transcutaneous blood gas monitoring. Birth defects: original article series. Vol. XV, No 4. New York: Liss, 1979:33–35

    Google Scholar 

  2. Roughton FJW, Darling RC, Root WS. Factors affecting the determination of oxygen capacity, content and pressure in human arterial blood. Am J Physiol 1944;142:708–720

    Google Scholar 

  3. Barcroft J, Nagahashi M. Direct measurement of partial pressure of oxygen in human blood. J Physiol 1921;55:339–345

    PubMed  CAS  Google Scholar 

  4. Severighaus JW, Astrup PB. History of blood gas analysis. III. Carbon dioxide tension. J Clin Monit 1985;60–75

  5. Danneel HL. Uber den durch diffundierende Gase hervorgerufenen Reststrom. Z Elektrochem 1897/98;4:227–242

    Article  Google Scholar 

  6. Heyrovsky J. Electrolysis with the dropping mercury electrode. Chemicke Listy 1922;16:256–304

    Google Scholar 

  7. Comroe JH Jr. Retrospectoscope: insights into medical discovery. Menlo Park, CA: Von Gehr Press, 1977:30

    Google Scholar 

  8. Heyrovsky J. The trends of polarography. Nobel Lecture, December 11, 1959. In: Nobel lectures. Chemistry. 1942–1962. Amsterdam: Elsevier, 1964:564–584

    Google Scholar 

  9. Heyrovsky J, Shikata M. Researches with the dropping mercury cathode. II. The polarograph. Rec Trav Chim 1925;44:496–498

    CAS  Google Scholar 

  10. Müller OH. The Polarographic Method of Analysis. Easton, PA: Chemical Education Publishing, 1941:27

    Google Scholar 

  11. Kolthoff IM, Laitinen HA. Voltametric determination of oxygen. Science 1940;92:152–154

    PubMed  Article  CAS  Google Scholar 

  12. 12. Kolthoff IM, Lingane JJ. Polarography. New York: Interscience Publishers, 1941:1–510

    Google Scholar 

  13. Prat S. Die Anwendung der polarographischem Methodic in der Biologie. Biochem Z 1926;175:268–273

    Google Scholar 

  14. Vitek V. Polarographic studies with the dropping mercury cathode. LVII. The estimation of oxygen contained in gases and solutions. Coll Czech Chem Communicat 1935;7:537–547

    Google Scholar 

  15. Müller OH, Baumberger JP. A continuous method for oxygen determination. Trans West Soc Naturalists. Eighth Annual Winter Meeting, Dec 26–28, 1935

  16. Baumberger JP. Determination of the oxygen dissociation curve of oxyhemoglobin by a new method. Am J Physiol 1938;123:10

    Google Scholar 

  17. Petdering HG, Daniels F. Determination of dissolved O2 by means of the dropping mercury electrode. J Am Chem Soc 1938;60:2796–2802

    Article  Google Scholar 

  18. Beecher HK, Follansbee R, Murphy AJ, Craig FN. Determination of the oxygen content of small quantities of body fluids by polarographic analysis. J Biol Chem 1942;146:197–206

    CAS  Google Scholar 

  19. Berggren SM. The oxygen deficit of arterial blood caused by nonventilating parts of the lung. Acta Physiol Scand 1942;4(Suppl 11):1–92

    Google Scholar 

  20. Wiesinger K. Die polarographische Messung der Sauerstoffspannung im Blut und ihre klinische Anwendung zur Beurteilung der Lungenfunktion. Helv Physiol Pharmacol Acta (Suppl 7) 1950:1–80

    Google Scholar 

  21. Bartels H. Potentiometrische Bestimmung des Sauerstoffdruckes im Vollblut mit der Quecksilbertropfelektrode. Theorie und Versuche. Arch Ges Physiol 1951;254:107–125

    Article  CAS  Google Scholar 

  22. Bartels H, Laue D. Die praktische Durchfuhrung der potentiometrischen Messung des Sauerstoffdruckes im Vollblut. Arch Ges Physiol 1951;254:126–136

    Article  CAS  Google Scholar 

  23. Glasstone S. The limiting current density in the electrodeposition of noble metals. Trans Am Electrochem Soc 1931;59:277–285

    Google Scholar 

  24. Bronk DW, Brink F, Connelly CM, et al. The time course of recovery of oxygen consumption in nerve. Fed Proc 1947;6:83

    CAS  PubMed  Google Scholar 

  25. Davies PW, Brink F Jr. Microelectrodes for measuring local O2 tension in tissues. Rev Sci Instrum 1942;13:524–533

    Article  CAS  Google Scholar 

  26. Carlson FD, Brink F Jr, Bronk DW. A continuous flow respirometer utilizing the oxygen cathode. Rev Sci Instrum 1950;21:923–932

    PubMed  Article  CAS  Google Scholar 

  27. Connelly CM, Bronk DW, Brink F Jr. A sensitive respirometer for the measurement of rapid changes in metabolism of oxygen. Rev Sci Instrum 1953;24:638–695

    Article  Google Scholar 

  28. Davies PW, Grenell RG. Metabolism and function in the cerebral cortex under local perfusion, with the aid of an oxygen cathode for surface measurement of cortical oxygen consumption. J Neurophysiol 1962;25:651–683

    PubMed  CAS  Google Scholar 

  29. Davies PW, Remond A. Oxygen consumption of the cerebral cortex of the cat during Metrazol convulsions. Proc Assoc Res Nerv Ment Dis 1946;26:205–217

    Google Scholar 

  30. Larrabee MG. Oxygen consumption of excised sympathetic ganglia at rest and in activity. J Neurochem 1958;2:81–101

    PubMed  Article  CAS  Google Scholar 

  31. Larrabee MG, Bronk DW. Metabolic requirements of sympathetic neurons. Cold Spr Harbor Symp Quant Biol 1952;17:245–266

    CAS  Google Scholar 

  32. Davies PW. The oxygen cathode. In: Nastuk, WL, ed. Physical techniques in biological research. Vol. IV. Special methods. New York: Academic, 1962:137–179

    Google Scholar 

  33. Charlton G. A microelectrode for determination of dissolved oxygen in tissues. J Appl Physiol 1961;16:729–733

    PubMed  CAS  Google Scholar 

  34. Clark LC, Misrahy G, Fox RP. Chronically implanted polarographic electrodes. J Appl Physiol 1958;13:85–91

    PubMed  CAS  Google Scholar 

  35. Lübbers DW, Baumgärtl H, Fabel H, et al. Principle of construction and application of various platinum electrodes. Prog Respir Res 1969;3:136–146

    Google Scholar 

  36. Olson RD, Brackett FS, Crickard RG. Oxygen tension measurement by a method of time selection using the static platinum electrode with alternating potential. J Gen Physiol 1949;32:681–703

    PubMed  Article  CAS  Google Scholar 

  37. Tobias JM. Syringe oxygen cathode for measurement of oxygen tension in solution and in respiratory gases. Rev Sci Instrum 1949;20:519–523

    Article  CAS  Google Scholar 

  38. Müller OH. Polarographic study with a microelectrode past which an electrolyte is flowing. J Am Chem Soc 1947;69:2992–2997

    PubMed  Article  Google Scholar 

  39. Morgan EH, Nahas GG. Investigation of polarometric method for oxygen tension in blood with rotating platinum electrode. Fed Proc 1950;9:91

    Google Scholar 

  40. Drenckhahn FO. Untersuchungen zur polarimetrischen Messung des Sauerstoffdruckes (PO2) im Blut mit der Platinelektrode. Naturwissenschaften 1951;38:455–462

    Article  CAS  Google Scholar 

  41. Clements JA, Moore JC. Method for continuous indication of oxygen tension in flowing blood. Am J Physiol 1952;171:713–714

    Google Scholar 

  42. Williams MH Jr. Alveolar-arterial oxygen tension differences in normal dogs. Am J Physiol 1956;173:77–109

    Google Scholar 

  43. Clark LC, Gollan F, Gupta VB. The oxygenation of blood by gas dispersion. Science 1950;111:85–87

    PubMed  Article  Google Scholar 

  44. Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 1953;6:189–193

    PubMed  CAS  Google Scholar 

  45. Clark LC Jr. Measurement of oxygen tension: a historical perspective. Crit Care Med 1981;9:960–692

    Google Scholar 

  46. Clark LC Jr. Monitor and control of blood and tissue O2 tensions. Trans Am Soc Artif Intern Organs 1956;2:41–48

    Google Scholar 

  47. Clark LC. Continuous recording of blood oxygen content. Surg Forum 1960;11:143–144

    PubMed  Google Scholar 

  48. McArthur KT, Clark LC, Lyons C, Edwards S. Continuous recording of blood oxygen saturation in open-heart operations. Surgery 1962;51:121–126

    Google Scholar 

  49. Auer LM, Gallhofer B. Rhythmic activity of cat pial vessels in vivo. Eur Neurol 1981;20:448–468

    PubMed  Article  CAS  Google Scholar 

  50. Severinghaus JW, Bradley AF. Electrodes for blood PO2 and PCO2 determination. J Appl Physiol 1958;13:515–520

    PubMed  CAS  Google Scholar 

  51. Severinghaus JW. Recent developments in blood O2 and CO2 electrodes. In: Woolmer R, ed. A Symposium on pH and blood gas measurements. London: Churchill, 1959:126–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Severinghaus, J.W., Astrup, P.B. History of blood gas analysis. IV. Leland Clark's oxygen electrode. J Clin Monitor Comput 2, 125–139 (1986). https://doi.org/10.1007/BF01637680

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637680

Key words

  • Measurement techniques: electrodes, polarographic, membrane, dropping mercury cathodes, oxygen
  • Brain: oxygen waves