Skip to main content
Log in

A Hopf bifurcation theorem for difference equations approximating a differential equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

If an ordinary differential equation is discretizised near an asymptotically stable stationary solution with a pair of imaginary eigenvalues by Euler's method with constant step lengthh, small invariant attracting cycles of radiusO(h 1/2) will appear. This Hopf bifurcation theorem is applied to prove the existence of limit cycles in certain difference equations occurring in biomathematics (hypercycle, two loci-two alleles) and is also extended to general Runge—Kutta methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E.: The Geometry of Population Genetics. Lecture Notes Biomath. 31. Berlin-Heidelberg-New York: Springer 1979.

    Google Scholar 

  2. Akin, E.: Cycling in simple genetic systems. J. Math. Biology13, 305–324 (1982).

    Google Scholar 

  3. Arnold, V.: Chapitres Supplémentaires de la Théorie des Equations Différentielles Ordinaire. Moscou: Édition Mir. 1980.

    Google Scholar 

  4. Eigen, M., Schuster, P.: The Hypercycle. A Principle of Natural Selforganization. Berlin-Heidelberg-New York: Springer. 1979.

    Google Scholar 

  5. Ewens, W. J.: Mathematical Population Genetics. Berlin-Heidelberg-New York: Springer. 1979.

    Google Scholar 

  6. Gambaudo, J. M.: Perturbation of a Hopf bifurcation by an external timeperiodic forcing. J. Diff. Equat. (To appear).

  7. Hastings, A.: Stable cycling in discrete time models. Proc. Natl. Acad. Sci. USA11, 7224–7225 (1981).

    Google Scholar 

  8. Hofbauer, J.: On the occurrence of limit cycles in the Volterra-Lotka equation. Nonlinear Analysis TMA,5, 1003–1007 (1981).

    Google Scholar 

  9. Hofbauer, J.: A difference equation model of the hypercycle. SIAM J. Appl. Math.44, 762–772 (1984).

    Google Scholar 

  10. Hofbauer, J., Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization. Part 2: Homogeneous growth functions of degree 2. SIAM J. Appl. Math.38, 282–304 (1980).

    Google Scholar 

  11. Iooss, G.: Bifurcation of Maps and Applications. North-Holland Mathematics Studies. 36. Amsterdam-New York-Oxford: North-Holland. 1979.

    Google Scholar 

  12. Iooss, G.: Persistance d'un cercle invariant per une application voisine de “l'application temps τ” d'un champ de vecteurs integrable. C. R. Acad. Sci. Paris, I,296, 27–30 and 113–116 (1983).

    Google Scholar 

  13. Lanford, O. E., III: Bifurcation of periodic solutions into invariant tori. In: Nonlinear Problems in the Physical Sciences and Biology, Lecture Notes in Mathematics 322, pp. 159–192. Berlin-Heidelberg-New York: Springer. 1973.

    Google Scholar 

  14. Marsden, J., McCracken, M.: The Hopf Bifurcation and its Applications. Appl. Math. Sciences Vol. 19. Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  15. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press. 1982.

  16. Negrini, P., Salvadori, L.: Attractivity and Hopf bifurcation. Nonlinear Analysis TMA3, 87–99 (1979).

    Google Scholar 

  17. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Physics20, 167–192 (1971).

    Google Scholar 

  18. Schuster, P., Sigmund, K., Hofbauer, J., Wolff, R.: Selfregulation of behaviour in animal societies. Biol. Cybernetics40, 1–25 (1981).

    Google Scholar 

  19. Schuster, P., Sigmund, K., Wolff, R.: Mass action kinetics of selfreplication in flow reactors. J. Math. Anal. Appl.78, 88–112 (1980).

    Google Scholar 

  20. Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer Tracts in Natural Philosophy, Vol. 23. Berlin-Heidelberg-New York: Springer. 1973.

    Google Scholar 

  21. Taylor, P., Jonker, L.: Evolutionarily stable strategies and game dynamics. Math. Biosci.40, 145–156 (1978).

    Google Scholar 

  22. Ushiki, S.: Central difference scheme and chaos. Physica4D, 407–424 (1982).

    Google Scholar 

  23. Zeeman, E. C.: Population dynamics from game theory. In: Global Theory of Dynamical Systems, Lecture Notes in Mathematics 819, pp. 471–497. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  24. Brezzi, F., Ushiki, S., Fujii, H.: “Real” and “ghost” bifurcation dynamics in difference schemes for ODE. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofbauer, J., Iooss, G. A Hopf bifurcation theorem for difference equations approximating a differential equation. Monatshefte für Mathematik 98, 99–113 (1984). https://doi.org/10.1007/BF01637279

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637279

Keywords

Navigation