Skip to main content
Log in

The influence of plants on atmospheric carbon monoxide and dinitrogen oxide

  • Biospheric Sources and Sinks of Atmospheric Trace Gases
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

It is shown by laboratory experiments and extensivein-situ measurements that higher plants (Vicia faba, Platanus acerifolia, Fagus silvatica, andPinus silvestris) produce carbon monoxide. The measurements were carried out under natural conditions with respect to the concentrations of O2 and H2O, and temperature. The CO2- and CO-mixing ratios were varied in the ranges 350 to 530 ppm and 3–270 ppb, respectively. The CO-production rates were found to be light dependent with an average value per cm2 of leaf area of 3×10−13 g/sec for a radiation intensity of 5×104 erg/cm2 sec. The production rates are independent of the CO2- and CO-mixing ratios employed in the test atmosphere. Considering the production rate of 3×10−13 g/cm2 sec to be representative for global conditions the total CO-production by plants is estimated to be 0.5–1.0×1014 g/year. In contrast to carbon monoxide atmospheric dinitrogen oxide is not influenced by plants in the same manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bidwell, R. G. S. andFraser, D. E. (1972),Carbon monoxide uptake and metabolism by leaves, Can. J. Bot.50, 1435–1439.

    Google Scholar 

  • Chapelle, E. W. andKrall, A. R. (1961),Carbon monoxide fixation by cell-free extracts of green plants. Biochem. Biophys. Acta49, 578–580.

    Google Scholar 

  • Chapelle, E. W. (1962),Carbon monoxide oxidation by algae, Biochim. Biophys. Acta62, 45–62.

    Google Scholar 

  • Chapman, D. I. andTocher, R. D. (1966),Occurrence and production of carbon monoxide by brown algae, Can. J. Bot.44, 1438–1442.

    Google Scholar 

  • Doehler, G. (1973), Neue Ergebnisse über die Induktionseffekte der photosynthetischen CO2-Aufnahme beiAnacystin und Chlorella, Ber. Dtsch. Bot. Ges.86, 371–379.

    Google Scholar 

  • Hahn, J. (1974),The north Atlantic ocean as a source of atmospheric N 2 O, Tellus26, 160.

    Google Scholar 

  • Hoffmann, P.,Photosynthese (Akademie-Verlag, Berlin, 1975), p. 162.

    Google Scholar 

  • Ingersoll, R. B., Inman, R. E. andFischer, W. R. (1974),Soil's potential as a sink for atm. carbon monoxide, Tellus26, 151–158.

    Google Scholar 

  • Krall, A. R. andTolbert, A. (1957),A comparison of the light-dependent metabolism of carbon monoxide by barley leaves with that of formaldehyde, formate and carbon dioxide, Plant Physiol.32, 321–326.

    Google Scholar 

  • Langdon, S. C. (1916),Carbon monoxide in the pneumatocyst of Nercocystis, Puget Sound Marine Station,1, 237–246.

    Google Scholar 

  • Liebl, K. H. andSeiler, W. (1976),CO and H 2 destruction at the soil surface, Microbial production and Utilization of gases, (Ed. H. G. Schlegel, G. Gottschalk, N. Pfennig, E. Goetze), KG. Göttingen, 215–230.

    Google Scholar 

  • Loewus, M. W. andDelwiche, C. C. (1963),Carbon monoxide production by algae, Plant Physiol.38, 371–374.

    Google Scholar 

  • Migeotte, M. (1949),The fundamental bond of carbon monoxide at 4.7 μ in the solar spectrum, Phys. Rev.75, 1108–1109.

    Google Scholar 

  • Pickwell, G. V., Barham, E. G. andWilton, J. W. (1964),Carbon monoxide production by a bathypelagic siphonophore, Science144, 860–862.

    Google Scholar 

  • Ruinen, J. (1961),The phyllosphere, Plant and Soil14, 81–109.

    Google Scholar 

  • Schmidt, U. andSeiler, W. (1970),A new method for recording molecular hydrogen in atm. air, J. Geophys. Res.75, 1713–1716.

    Google Scholar 

  • Seiler, W. andJunge, C. (1970),Carbon monoxide in the atmosphere, J. Geophys. Res.75, 217–225.

    Google Scholar 

  • Seiler, W. andSchmidt, U.,Dissolved non-conservative gases in seawater,The Sea V (Ed. E. D. Goldberg) (Wiley and Sons, New York, 1974), pp. 219–243.

    Google Scholar 

  • Seiler, W. (1974),The cycle of atmospheric CO, Tellus26, 116–135.

    Google Scholar 

  • Seiler, W. andZankl, H. Man's impact on the atmospheric CO-cycle, In:Environmental Biogeochemistry (Ed. J. O. Nriagu), (Ann Arbor Science, Ann Arbor, 1976)1, 25–37.

    Google Scholar 

  • Seiler, W. (1976),The cycle of CO in the atmosphere, Proceedings of the ICESA-Conference 2, printed by Inst. of Electr. and Electronics Eng. New York 35/4/1-9.

    Google Scholar 

  • Siegel, S. M., Renwick, G. andRosen, L. A. (1966),Formation of carbon monoxide during seed germination and seedling growth, Science137, 683–684.

    Google Scholar 

  • Simpson, F. J., Talbot, G. andWestlake, D. W. S. (1960),Production of carbon monoxide in the enzymatic degradation of Rutin, Biochem. Biophys. Res. Comm.2, 15–18.

    Google Scholar 

  • Troxler, R. F. andDokos, J. M. (1973),Formation of carbon monoxide and bile pigment in red and green algae, Plant Physiol.51, 72–75.

    Google Scholar 

  • Westlake, D. W. S., Talbot, G., Blakley, E. R. andSimpson, F. J. (1959),Microbial decomposition of rutin, Can. J. Microbiol.5, 621–629.

    Google Scholar 

  • Whittenberg, J. B. (1960),The source of carbon monoxide in the float of Physalia physalis, the ‘Portuguese Man of War’, J. Exptl. Biol.37, 698–705.

    Google Scholar 

  • Wilks, S. S. (1959),Carbon monoxide in green plants, Science129, 964–966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, W., Giehl, H. & Bunse, G. The influence of plants on atmospheric carbon monoxide and dinitrogen oxide. PAGEOPH 116, 439–451 (1978). https://doi.org/10.1007/BF01636898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01636898

Key Words

Navigation