Skip to main content

Subacromial space width changes during abduction and rotation -a 3-D MR imaging study

Les modifications de la hauteur de l'espace sub-acromial au cours des mouvements d'abduction et de rotation — Etude en imagerie par résonance magnétique nucléaire tridimensionnelle

Summary

The objectives of this study were to determine systematic changes of the normal subacromial space width during abduction and rotation, and to analyze the spatial relationship of the supraspinatus muscle with the acromion and clavicle. 12 healthy volunteers were imaged by an open MR scanner in 5 different positions of abduction and in 3 positions of rotation. After three dimensional (3D) reconstruction and 3D Euclidian distance transformation, the minimal spatial distances between the humerus and the acromion and the humerus and clavicle were computed. The minimal acromio-humeral distance decreased significantly from 30° of abduction (mean 7.0 mm±1.6 mm) to 120° (mean 3.9 mm;±1.8 mm; p<0.0001). At 30°, the minimal distance penetrated the supraspinatus, whereas at 120° it was always located lateral to the supraspinatus tendon. At 90° with internal rotation (7.6 mm,±2.3 mm) the minimal acromio-humeral distance was larger than in neutral rotation (5.4 mm,±2.3 mm) or external rotation (4.4 mm,±2.2 mm; p<0.05), but it penetrated the supraspinatus tendon at its most vulnerable part, reaching the acromion at its anterior inferior border. We conclude that the subacromial space width changes during abduction and rotation and that the supraspinatus is in closest contact to the anterior inferior border of the acromion in 90° of abduction with 45° internal rotation. These values obtained in volunteers can be used as a basis for further investigations in patients with the impingement syndrome.

Résumé

Les objectifs de ce travail étaient de déterminer les modifications de la hauteur de l'espace sub-acromial normal pendant l'abduction et la rotation, et d'analyser les rapports dans l'espace du m. supra-épineux avec l'acromion et la clavicule. L'étude a été réalisée sur une IRM ouverte chez 12 volontaires sains dans 5 positions différentes d'abduction et 3 de rotation. Après reconstruction tridimensionnelle (3D) et mesure euclidienne de distance dans l'espace, les distances minimales entre l'humérus et l'acromion d'une part et la clavicule d'autre part ont fait l'objet d'un traitement informatique. La distance acromiohumérale minimale diminuait de façon significative à partir de 30° (moyenne 7.0 mm;+1.6 mm.) jusqu'à 120° (moyenne 3.9 mm;+1.8 mm; p<0.0001) d'abduction. A 30°, le vecteur de la distance minimale traversait le m. supra-épineux alors qu'à 120° et au-delà, il était en situation latérale par rapport à son tendon chez tous les volontaires. A 90°, la distance acromio-humérale minimale était plus grande en rotation interne (7.6 mm,+2.3 mm) qu'en rotation neutre (5.4 mm,+2.3 mm) ou externe (4.4 mm,+2.2 mm; p<0.05), mais son vecteur traversait le tendon des m. supra-épineux dans sa partie la plus vulnérable et atteignait l'acromion à son bord antérieur et inférieur. Ainsi, la hauteur de l'espace subacromial se modifie pendant l'abduction et la rotation et le m. supra-épineux vient au contact étroit du bord antérieur et inférieur de l'acromion à 90° d'abduction avec 45° de rotation interne. Ces chiffres obtenus chez des volontaires sains constituent des valeurs de références pour des travaux ultérieurs chez des patients souffrant d'un conflit sub-acromial.

This is a preview of subscription content, access via your institution.

References

  1. Aoki M, Ishii S, Usui M (1986) The slope of the acromion and rotator cuff impingement. Orthop Trans 10: 228

    Google Scholar 

  2. Banas MP, Miller RJ, Totterman S (1995) Relationship between the lateral acromion angle and rotator cuff disease. J Shoulder Elbow Surg 4: 454–461

    PubMed  Google Scholar 

  3. Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC (1991) The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 10: 823–838

    PubMed  Google Scholar 

  4. Burk DL, Karasick D, Kurtz AB (1989) Rotator cuff tears: prospective comparison of MR imaging with arthrography, sonography, and surgery. AJR 153: 87–92

    PubMed  Google Scholar 

  5. Burns WC II, Whipple TL (1993) Anatomic relationships in the shoulder impingement syndrome. Clin Orthop 294: 96–102

    PubMed  Google Scholar 

  6. Deutsch A, Altchek DW, Schwartz E, Otis JC, Warren RF (1996) Radiologic measurement of superior migration of the humeral head in impingement syndrome. J Shoulder Elbow Surg 5: 186–193

    PubMed  Google Scholar 

  7. Flatow EL, Soslowsky LJ, Ticker JB, Pawluk RJ, Heppler M, Ark J, Mow VC, Bigliani LU (1994) Excursion of the rotator cuff under the acromion. Am J Sports Med 22: 779–788

    PubMed  Google Scholar 

  8. Gagey N, Ravaud E, Lassau JP (1993) Anatomy of the acromial arch: correlation of anatomy and magnetic resonance imaging. Surg Radiol Anat 15: 63–70

    PubMed  Google Scholar 

  9. Golding FC (1962) The shoulder: The forgotten joint. Br J Radiol 35: 149–158

    PubMed  Google Scholar 

  10. Graichen H, Bonel H, Stammberger T, Heuck A, Englmeier KH, Reiser M, Eckstein F (1998) A technique for determining the spatial relationship between the rotator cuff and the subacromial space in arm abduction using MRI and 3D image processing. Magn Res Med 40: 640–643

    Google Scholar 

  11. Hawkins RJ, Hobeika PE (1983) Physical examination of the shoulder. Orthopedics 6: 59–64

    Google Scholar 

  12. Hee-Jong Y, Park KH (1992) Surface modelling method by polygonal primitives for visualizing three-dimensional data. Visual Computer 8: 246–259

    Google Scholar 

  13. Ianotti JP, MB Zlatkin, JL Esterai, HY Kressel, MK Dalinka, KP Spindler (1991) Magnetic resonance imaging of the shoulder: Sensitivity, specificity, and predictive value. J Bone Joint Surg 73A: 17–29

    Google Scholar 

  14. Jobe FW, Jobe JM (1983) Painful athletic injuries of the shoulder. Clin Orthop 173: 117–124

    PubMed  Google Scholar 

  15. Kessel L, Watson M (1977) The painful arc syndrome. Clinical classification as a guide to management. J Bone Joint Surg (Br) 59-B: 166–172

    Google Scholar 

  16. Lochmüller EM, Maier U, Anetzberger H, Habermayer P, Müller-Gerbl M (1997) Determination of subacromial space width and inferior acromial mineralization by 3D CT technique and preliminary data from patients with unilateral supraspinatus outlet syndrome. Surg Radiol Anat 19: 329–337

    PubMed  Google Scholar 

  17. Neer CS II (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder. A preliminary report. J Bone Joint Surg 54A: 41–50

    Google Scholar 

  18. Neer CS II (1983) Impingement lesions. Clin Orthop 173: 70–77

    PubMed  Google Scholar 

  19. Petersson CJ, Redlund-Johnell I (1984) The subacromial space in normal shoulder radiographs. Acta Orthop Scand 55: 57–58

    PubMed  Google Scholar 

  20. Rafii M, Firooznia H, Sherman OH, Minkoff J, Golimbu C, Gidumal R, Schinella R, Zaslav K (1990) Rotator cuff lesions: Signal patterns at MR imaging. Radiology 177: 817–823

    PubMed  Google Scholar 

  21. Raya SP, Udupa JK (1990) Shape-based interpolation of multidimensional objects. IEEE Transactions on Medical Imaging 9: 32–42

    Google Scholar 

  22. Seeger LL, Gold RH, Bassett LW (1988) Shoulder impingement syndrome: MR findings in 53 shoulders. AJR 150: 343–347

    PubMed  Google Scholar 

  23. Sherman OH (1997) MR imaging of impingement and rotator cuff disorders. Magn Reson Imaging Clin N Am 5: 721–734

    PubMed  Google Scholar 

  24. Cotton RE, Rideout DR (1964) Tears of the humeral rotator cuff: A radiological and pathological necropsy survey. J Bone Joint Surg 64B: 314–328

    Google Scholar 

  25. Sperner G (1995) The influence of the subacromial space on the impingement syndrome. Unfalchirurg 98: 309–319

    Google Scholar 

  26. Stammberger T, Eckstein F, Englmeier KH, Reiser M (1998) Determination of 3D cartilage thickness data from MR imaging — computational method and reproducibility in the living. MRM (in press)

  27. Weiner DS, Macnab I (1970) Superior migration of the humeral head. J Bone Joint Surg 52B: 524–527

    Google Scholar 

  28. Wülker N, Wirth CJ, Plitz W, Roetman B (1995) A dynamic shoulder model: Reliability testing and muscle force study. J Biomechanics 28: 489–499

    Google Scholar 

  29. Wülker N, Plitz W, Roetman B, Rössig S (1995) Biomechanical investigation of the impingement syndrome at the shoulder. Z Orthop 133: 61–66

    PubMed  Google Scholar 

  30. Zlatkin, MB, Ianotti JP, Roberts MC, Esterhai JL, Dalinka MK, Kressel HY, Schwartz JS, Lenkinski RE (1989) Rotator cuff tears: Diagnostic performance of MR imaging. Radiology 172: 223–229

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graichen, H., Bonel, H., Stammberger, T. et al. Subacromial space width changes during abduction and rotation -a 3-D MR imaging study. Surg Radiol Anat 21, 59–64 (1999). https://doi.org/10.1007/BF01635055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01635055

Key words

  • Shoulder
  • Impingement syndrome
  • Subacromial space
  • MR imaging
  • 3D reconstruction