Skip to main content
Log in

Cooling of a 2-dimensional intrusion

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Summary

Descriptions of the processes of crystallization and cooling of a planar intrusion body and its environs are compared by applying the frequently used Jaeger-Carslaw, adjusted Feoktistov-Feoktistova nad modified Lovering methods.

These comparisons indicate that the mathematical complications of the Feoktistov-Feoktistova method are outweighted by its better accuracy as well as by the fact that the process of computation is the same for any time and any ratio of thermal properties of lava and neighbouring rocks.

The comparisons imply that for dimensionless time, τ≳0.7, the modified Lovering method can be practically used also in the close surroundings of the contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bochníček: Der Einfluss der geometrischen Form und des Erkaltungsregimes auf den Verlauf der Magnetisation innerhalb einiger geologischer Gebilde. Általános Föltani Szemle, Budapest 1983.

    Google Scholar 

  2. J. Bochníček, P. Hejda: Cooling Rate of a Vertical Intrusion. Physical Properties of the Mineral System of the Earth's Interior. CAPG Project 3. Czechoslovak Academy of Sciences Geophysical Institute Prague 1985.

  3. T. S. Lovering: Heat Conduction in Dissimilar Rocks and the Use of Thermal Models. Bull. Geol. Soc. Am., Vol. 47, 1936, 249.

    Article  Google Scholar 

  4. J. C. Jaeger: The Temperature in the Neighborhood of a Cooling Intrusive Sheet. Am. Jour. Sci., Vol. 255, 1957, 306.

    Article  Google Scholar 

  5. J. C. Jaeger: Temperatures Outside a Cooling Intrusive Sheet. Am. Jour. Sci., Vol. 257, 1959, 44.

    Article  Google Scholar 

  6. H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids. 2nd ed., Oxford University Press, New York, 1959.

    Google Scholar 

  7. J. C. Jaeger: Thermal Effects of Intrusions. Rev. Geoph., Vol. 2, 1964, 443.

    Article  Google Scholar 

  8. T. S. Lovering: Temperatures in and Near Intrusions. Econ. Geol., Vol. 50, 1955, 249.

    Google Scholar 

  9. K. L. Buchan, E. J. Schwarz, D. T. A. Symons, M. Stupavsky: Remanent Magnetisation in the Contact Zone Between Columbia Plateau Flows and Feeder Dikes: Evidence for Groundwater Layer at Time of Intrusion. JGR, Vol. 85, 1980, 1888.

    Article  Google Scholar 

  10. E. J. Schwarz, K. L. Buchan, A. Cazavant: Post-Aphebian Uplift Deduced from Remanent Magnetisation, Yellowknife Area of Slave Province. Can. J. Earth, Vol. 22, 1985, 1793.

    Article  Google Scholar 

  11. Г. Д. Феоктистов, М. Ф. Феоктистова: О влиянии скрытой теплоты кристaлизации на температуриое поле вблизи пластовых интрузий трaппов. — В кн.: Математические методы в петрологии и геохимии. Москва „Наука“, 1970.

  12. E. S. Larsen: Time Required for the Crystallization of the Great Batholith of Southern and Lower California. Am. Jour. Sci., Vol. 243, 1945, 399.

    Google Scholar 

  13. Таблицы физических величин, Москва, Атомиздат, 1976.

  14. J. Schön: Petrophysik. Physikalische Eigenschaften von Gesteinen und Mineralen. F. Enke Verlag, Stuttgart, 1983.

    Google Scholar 

  15. P. H. Price, M. R. Slack: The Effect of Latent Heat on Numerical Solutions of the Heat Flow Equation. British Jour. Applied Physics, Vol. 5, 1954, 285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochníček, J., Hejda, P. Cooling of a 2-dimensional intrusion. Stud Geophys Geod 33, 254–267 (1989). https://doi.org/10.1007/BF01633529

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01633529

Keywords

Navigation