Skip to main content
Log in

Development of the male scent organ ofCreatonotos transiens (Lepidoptera, Arctiidae) during metamorphosis

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

(1) The male abdominal scent organ (corema) of the arctiid mothCreatonotos transiens consists of a basal bladder and four tubes. It can be everted from the sternal intersegmental membrane 7/8. Its scent hairs (scales) produce and release the pheromone hydroxydanaidal, which attracts both sexes. Pyrrolizidine alkaloids (PA) ingested by the larva with its food are not only precursors of the pheromone but also a morphogen, which quantitatively controls the growth of the pupal corema and, thus, its final size and number of hairs. (2) The coremata arise from epidermalanlagen at the anterior border of the 8th abdominal sternite. If male larvae are fed 1 mg PA these organs begin to develop from small vesicles, and four tubes then arise during the first 3 pupal days. The corresponding mitoses reach their peak at 36 h. During the next 2 days the tubes shorten, while the walls become thin and doubly folded. The total surface of the corema increases about 20 times because of the shape transformation of the epidermal cells from prismatic to very flat. (3) The scent hairs originate from trichogen cells, which arise together with their associated tormogen cells during the 1st pupal day by way of differential mitoses. As the trichogen cells grow, their nuclei enlarge by way of endomitoses, elongate distally, and thus produce the hairs that extend into the lumen of the corema. Tormogen cells degenerate by the 8th day at latest. The hairs in each tube form a thick, caudally oriented bundle. The hair cells are finally bottle-shaped and at day 6 they extend freely into the hemolymph space. They are probably also the pheromoneproducing cells in later pupal and early imaginal life. Mitoses that produce trichogen cells stop after the 1st day, those producing epithelial cells 2 days later. This delay shifts the ratio of the two cell types from about 1∶11 (18 h) to 1∶40. (4) The processes hitherto described refer to “normogenesis” with ample PA supply. “Control” coremata in PA-free or PA-deficient specimens develop in principle in the same way, but at a slower rate, with minimal hair cell numbers barely 1/10th of normal, or at any rates between, depending upon the earlier PA supply. The size of control coremata varies from very small to small; even the hair cells and the hairs are smaller. (5) PA regulates corema development quantitatively through the number of mitoses of its cells and of endomitotic steps of the hair cells. In PA-treated specimens the coremaanlage is already advanced prior to pupation, at about the time when its sensitivity to PA influence terminates, in the early prepupa. Since PA only affects the anlagen of the corema and not that of any other body part (not even the basal coremal bladder), we postulate a selective interaction of PA with the presumptive corema cells. We found earlier that ecdysone is also involved, since the respective cell numbers can only be realized if this hormone is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson SO, Weis-Fogh T (1964) Resilin, a rubberlike protein in arthropod cuticle. Adv Insect Physiol 2:1–66

    Google Scholar 

  • Baker NE, Mlodzik M, Rubin GM (1990) Spacing differentiation in the developingDrosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250:1370–1377

    Google Scholar 

  • Bergomaz R, Boppré M (1986) A simple instant diet for rearing Arctiidae and other moths. J Lepidopt Soc 40:131–137

    Google Scholar 

  • Boppré M, Schneider D (1985) Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in maleCreatonotos moths (Lepidoptera:Arctiidae). J Comp Physiol 157:569–577

    Google Scholar 

  • Boppré M, Schneider D (1989) The biology ofCreatonotos (Lepidoptera: Arctiidae) with special reference to the androconial system. Zool J Linnean Soc 96:339–356

    Google Scholar 

  • Boppré M, Vane-Wright RI (1989) Androconial systems in Danainae (Lepidoptera):functional morphology ofAmauris, Danaus, Tirumala andEuploea. Zool J Linnean Soc 97:101–133

    Google Scholar 

  • Bryant PJ, Schmidt O (1990) The genetic control of cell proliferation inDrosophila imaginai discs. J Cell Sci Suppl 13:169–189

    Google Scholar 

  • Campbell RC (1971) Statistische Methoden für Biologie und Medizin. Thieme, Stuttgart, pp 46–51

    Google Scholar 

  • Caveney S (1985) Intercellular communication. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 2. Pergamon Press, Oxford, New York, Toronto, pp 319–370

    Google Scholar 

  • Clearwater JR (1975) Structure, development, and evolution of the male pheromone system in some Noctuidae (Lep.). J Morphol 146:129–176

    Google Scholar 

  • Corbet SA, Lai-Fook J (1977) The hairpencils of the floor mothEphestia kuehniella. J Zool Lond 181:377–394

    Google Scholar 

  • Egelhaaf A, Cölln K, Schmitz B, Buck M, Wink M, Schneider D (1990) Organ specific storage of dietary pyrrolizidine alkaloids in the arctiid mothCreatonotos transiens. Z Naturforsch 45c:115–120

    Google Scholar 

  • Fristrom JW, Fristrom DK, Fekete E, Kuniyuki AH (1977) The mechanism of evagination of imaginal discs ofDrosophila malanogaster. Am Zool 17:671–684

    Google Scholar 

  • Gnatzy W, Romer F (1984) Cuticle: formation, moulting and control. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument: I. Invertebrates. Springer, Berlin Heidelberg New York, pp 638–684

    Google Scholar 

  • Grant GG (1971) Scent apparatus of the male cabbage looper,Trichoplusia ni. Ann Entomol Soc Am 64:347–352

    Google Scholar 

  • Grant GG (1978) Morphology of the presumed male pheromone glands on the forewings of tortricid and phycitid moths. Ann Entomol Soc Am 71:422–431

    Google Scholar 

  • Grant GG, Eaton JL (1973) Scent brushes of the male tobacco hornwormManduca sexta (Lepidoptera: Sphingidae). Ann Entomol Soc Am 66:901–904

    Google Scholar 

  • Graves BJ, Schubiger G (1982) Cell cycle changes during growth and differentiation of imaginai leg discs inDrosophila melanogaster. Dev Biol 93:104–110

    Google Scholar 

  • Greenstein ME (1972) The ultrastructure of developing wings in the giant silkmoth,Hyalophora cecropia: II. Scale-forming and socket-forming cells. J Morphol 136:23–52

    Google Scholar 

  • Gupta BD (1980) Coremata ofParallelia conficiens Walker (Lep., Noctuidae). Zool Anz 205 (112): 141–144

    Google Scholar 

  • Hartenstein V, Posakony JW (1990) A dual function of the Notch gene inDrosophila sensillum development. Dev Biol 142:13–30

    Google Scholar 

  • Held LI (1990) Arrangement of bristles as a function of bristle number on a leg segment inDrosophila melanogaster. Roux's Arch Dev Biol 199:48–62

    Google Scholar 

  • Hollander AL, Yin CM, Schwalbe CP (1982) Location, morphology and histology of the sex pheromone glands of the female gipsy moth,Lymantria dispar (L.). J Insect Physiol 28:513–518

    Google Scholar 

  • Kato Y, Riddiford LM (1987) The role of 20-hydroxyecdysone in stimulating epidermal mitoses during the larval-pupal transformation of the tobacco hornworm,Manduca sexta. Development 100:227–236

    Google Scholar 

  • Keil T (1978) Die Makrochaeten auf dem Thorax vonCalliphora vicina Robineau-Desvoidy (Calliphoridae, Diptera). Zoomorphologie 90:151–180

    Google Scholar 

  • Köhler W (1932) Die Entwicklung der Flügel bei der MehlmotteEphestia kühniella Zeller. Z Morph Ökol Tiere:582–681

  • Kühn A, Piepho H (1938) Die Reaktionen der Hypodermis und der Versonschen Drüsen auf das Verpuppungshormon beiEphestia kühniella. Biol Zentralbl 58:12–51

    Google Scholar 

  • Lawrence PA (1966a) Development and determination of hairs and bristles in the milkweed bug,Oncopeltus fasciatus (Lygaeidae, Hemiptera). J Cell Sci 1:475–498

    Google Scholar 

  • Lawrence PA (1966b) Gradients in the insect segment: the orientation of hairs in the milkweed bug,Oncopeltus fasciatus. J Exp Biol 44:607–620

    Google Scholar 

  • Lawrence PA (1973) The development of spatial patterns in the integument of insects. In: Counce SJ, Waddington GH (eds) Developmental systems: Insects, vol II. Academic Press, New York London, pp 157–209

    Google Scholar 

  • Lawrence PA, Hayward P (1971) The development of a simple pattern: spaced hairs inOncopeltus fasciatus. J Cell Sci 8:513–524

    Google Scholar 

  • Löbbecke EA (1969) Autoradiographische Bestimmung der DNS-Synthese-Dauer von Zellen der Flügelimaginalanlage vonEphestia kühniella. Roux's Arch Dev Biol 162:1–18

    Google Scholar 

  • Locke M (1985) A structural analysis of post-embryonic development. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 2. Pergamon Press, Oxford New York Toronto, pp 87–149

    Google Scholar 

  • Muskavitch MAT, Hoffmann FM (1990) Homologs of vertebrate growth factors inDrosophila melanogaster and other invertebrates. Curr Top Dev Biol 24:289–328

    Google Scholar 

  • Nickisch-Rosenegk E von, Schneider D, Wink M (1990) Time course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth,Creatonotos transiens. Z Naturforsch 45c:881–894

    Google Scholar 

  • Nielsen M (1979) Morphologie de la glande à phéromone sexuelle mâle dePhragmatobia fuliginosa (Arctiidae). Arch Biol (Bruxelles) 90:161–176

    Google Scholar 

  • Nöthiger R (1972) The larval development of imaginal discs. In: Ursprung H, Nöthiger R (eds) The biology of imaginal discs. Springer, Berlin Heidelberg New York, pp 1–34

    Google Scholar 

  • Noirot C, Quennedy A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80

    Google Scholar 

  • Nübler-Jung K (1987a) Insect epidermis: disturbance of supracellular tissue polarity does not prevent the expression of cell polarity. Roux's Arch Dev Biol 196:286–289

    Google Scholar 

  • Nübler-Jung K (1987b) Tissue polarity in an insect segment: denticle pattern resemble spontaneously forming fibroblast patterns. Development 100:171–177

    Google Scholar 

  • Nübler-Jung K, Grau V (1987) Pattern control in insect segments: superimposed features of the pattern may be subject to different control mechanisms. Roux's Arch Dev Biol 196:290–294

    Google Scholar 

  • Overton J (1966) Microtubules and microfibrils in morphogenesis of the scale cells ofEphestia kühniella. J Cell Biol 29:293–305

    Google Scholar 

  • Pliske TE, Salpeter MM (1971) The structure and development of the hairpencil glands in males of the queen butterfly,Danaus gilippus berenice. J Morphol 134:215–242

    Google Scholar 

  • Rick-Wagner S (1986) Die Entwicklung der Coremata vonCreatonotos transiens (Lep., Arctiidae) unter dem Einfluß von Pyrrolizidin-Alkaloiden. Thesis, University of Cologne

  • Riddiford LM (1985) Hormone action at the cellular level. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 8. Pergamon Press, Oxford, New York, Toronto, pp 37–84

    Google Scholar 

  • Sander K, Nübler-Jung K (1981) Polarity and gradients in insect development. In: Schweiger HG (ed) International cell biology 1980–1981. Springer, Berlin Heidelberg New York, pp 497–506

    Google Scholar 

  • Schmitz B, Buck M, Egelhaaf A, Schneider D (1989) Ecdysone and a dietary alkaloid interact in the development of the pheromon gland of a male moth (Creatonotos, Lepidoptera: Arctiidae). Roux's Arch Dev Biol 198:1–7

    Google Scholar 

  • Schneider D, Boppré M (1981) Pyrrolizidinalkaloide als Vorstufen für die Duftstoff-Biosynthese und als Regulatoren der Duftorgan-Morphogenese beiCreatonotos (Lepidoptera:Arctiidae). Verh Dtsch Zool Ges 1981:269

    Google Scholar 

  • Schneider D, Boppré M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development inCreatonotos moths: regulation by pyrrolizidine alkaloids. Science 215:1264–1265

    Google Scholar 

  • Steinbrecht RA (1964) Feinstruktur und Histochemie der Sexualduftdrüse des SeidenspinnersBombyx mori. Z Zellforsch 64:227–261

    Google Scholar 

  • Stockem W, Komnick H (1970) Erfahrungen mit der Styrol-Methakrylat-Einbettung als Routinemethode für die Licht- und Elektronenmikroskopie. Mikroskopie 26:199–203

    Google Scholar 

  • Stoßberg M (1938) Über die Entwicklung der Schmetterlingsschuppen (Untersuchungen anEphestia kühniella Z.). Biol Zentralbl 57:393–402

    Google Scholar 

  • Trepte HH (1976) Das Puffmuster der Borstenapparat-Chromosomen vonSarcophaga barbata. Chromosoma 55:137–164

    Google Scholar 

  • Wasserthal LT, Wasserthal W (1977) Ultrastructure of a scent scale organ with pressure discharge in maleCaligo eurilochus brasiliensis (Fldr.) (Eepidoptera:Brassolidae). Cell Tissue Res 177:87–103

    Google Scholar 

  • Williams GIA, Caveney S (1980) A gradient of morphogenetic information involved in muscle patterning. J Embryol Exp Morphol 58:35–61

    Google Scholar 

  • Willis MA, Birch MC (1982) Male lek formation and female calling in a population of the Arctiid mothEstigmene acrea. Science 218:168–170

    Google Scholar 

  • Wink M, Schneider D (1988a) Fate of plant-derived metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais, andCreatotnotos transiens). J Comp Physiol 160:389–400

    Google Scholar 

  • Wink M, Schneider D (1988b) Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting mothCreatonotos. Naturwissenschaften 75:524–525

    Google Scholar 

  • Wink M, Schneider D, Witte L (1988) Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth,Creatonotos transiens: stereochemical conversion of heliotrine. Z Naturforsch 43c:737–741

    Google Scholar 

  • Wunderer H (1990) Aspekte des Paarungsverhaltens vonCreatonotos transiens Walker (Lepidoptera, Arctiidae). NachrBl Bayr Entomol 39:121–127

    Google Scholar 

  • Wunderer H, Hansen K, Bell TW, Schneider D, Meinwald J (1986) Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera-Arctiidae): behavior, morphology, chemistry and electrophysiology. Exp Biol 46:11–27

    Google Scholar 

  • Yaginuma T, Kai H, Happ GM (1988) 20-Hydroxyecdysone accelerates the flow of cells into the G1 phase and the S phase in a male accessory gland of the mealworm pupa (Tenebrio molitor). Dev Biol 126:173–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelhaaf, A., Rick-Wagner, S. & Schneider, D. Development of the male scent organ ofCreatonotos transiens (Lepidoptera, Arctiidae) during metamorphosis. Zoomorphology 111, 125–139 (1992). https://doi.org/10.1007/BF01632903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01632903

Keywords

Navigation