Skip to main content
Log in

Antennal circulatory organs in Onychophora, Myriapoda and Hexapoda: Functional morphology and evolutionary implications

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

A comparative investigation of the antennal circulatory organs in representatives of the Onychophora, all subtaxa of the Myriapoda and numerous taxa of the Hexapoda (comprising a total of 54 species) revealed an unexpected diversity in structure and function.

In the Onychophora, antennal vessels exist which are connected to the enlarged anterior end of the aorta dorsal to the brain.

In the Chilopoda, Diplopoda and Symphyla, antennal vessels exist which originate from the dorsal vessel caudal to the brain. They extend under the optic lobes, lateral to the circumoesophageal connectives, into the antennae.

In the Hexapoda, the investigations include representatives of all higher taxa, apart from the Paraneoptera and the Holometabola. Generally, antennal vessels exist. In the Diplura, they originate from the anterior end of the aorta in front of the brain. In all other insects the antennal vessels are separate from the dorsal vessel. Their proximal ends form ampullary enlargements which are attached to the frontal cuticle near the antenna bases. They communicate via valved ostia with the haemolymph sinus in front of the brain. In the Archaeognatha, Zygentoma, Odonata, certain Plecoptera and the Notoptera, no muscles are connected to these organs. In all other groups the ampullae are pulsatile as a result of associated muscles (“antennal hearts”). These muscles diverge widely in their attachments and act either as compressors (Dermaptera) or dilators of the ampullae (Embioptera, Blattopteroidea, Orthopteroidea, and some Plecoptera).

In the Collembola and Ephemeroptera, special antennal circulatory organs are lacking. In some forms the anatomical arrangement of the inner organs, in conjunction with short diaphragms at the antenna bases, apparently leads to a channelling of haemolymph flow. This condition may be explained by the very short antennae of these insects and is considered as a convergent and apomorphic state in these taxa.

The antennal vessels are supposed to be homologous within the Tracheata and to represent the lateral arteries of the antenna segment. An origin from the dorsal vessel is considered an ancestral state, which was lost in the stem lineage of the Ectognatha. Specific space constraints within the cephalic capsule are discussed as the possible reason for this loss. The evolution of pulsatile antennal circulatory organs in the Neoptera is the result of the association of muscles with the proximal ampullary ends of the antennal vessels. The attachments and innervation of these muscles indicate a derivation from precerebral pharyngeal dilators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amp :

ampulla

Ant :

antenna

ant :

anterior

AN :

antennal nerve

Ao :

aorta

AV :

antennal vessel

Br :

brain

BrSi :

brain sinus

CC :

corpora cardiaca

CoeC :

circumoesophageal connectives

CM :

compressor muscle of ampulla

CT :

connective tissue

Dia :

diagphragm

do :

dorsal

DM :

dilator muscle of ampulla

DM1 :

ampullo-ampullary dilator muscle

DM2 :

ampullo-pharyngeal dilator muscle

DM3 :

ampullo-frontal dilator muscle

DM Acc :

accessory dilator muscle of ampulla

DV :

dorsal vessel

EB :

elastic band

FbDM :

fronto-buccal pharynx dilator muscle

FG :

frontal ganglion

FSa :

frontal sac

FSe :

frontal septum

FSi :

frontal sinus

Lb :

labium

LV :

lateral vessel of aorta

MA :

mouth-angle

Nr :

nervus recurrens

Oc :

ocellus

Oe :

oesophagus

OeSi :

oesophageal sinus

Ost :

ostium

Ph :

pharynx

Pl :

labial palpus

RM :

retractor muscle of mouth-angle

RMl :

lateral retractor of mouth-angle

RMm :

medial retractor of mouth-angle

SceSi :

supracerebral sinus

SD :

salivary duct

T :

tentorium

References

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, New York

    Google Scholar 

  • Arnold JW (1960) The course of blood circulation in mature embryos of the cockroachBlaberus giganteus (L.) (Orthoptera: Blattidae). Can J Zool 38:1027–1035

    Google Scholar 

  • Baccetti B (1987) Spermatozoa and phylogeny in orthopteroid insects. In: Baccetti B (ed) Evolutionary biology of orthopteroid insects. Horwood, Chichester, pp 12–112

    Google Scholar 

  • Bayer R (1968) Untersuchungen am Kreislaufsystem der Wanderheuschrecke (Locusta migratoria migratorioides R. et F., Orthopteroidea). Z Vgl Physiol 58:76–155

    Google Scholar 

  • Beattie TM (1976) Autolysis in axon terminals of a new neurohaemal organ in the cockroachPeriplaneta americana. Tissue Cell 8:305–310

    Google Scholar 

  • Bitsch J (1963) Morphologie céphalique des Machilides (Insecta Thysanura). Ann Sci Nat Zool Paris 12 Ser/5:501–706

    Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. Wiley, New York Chichester Brisbane Toronto

    Google Scholar 

  • Briggs DEG, Fortey RA (1989) The early radiation and relationships of the major arthropod groups. Science 246:241–243

    Google Scholar 

  • Brocher F (1917) Etude expérimentale sur la fonctionnement du vaisseau dorsal et sur la circulation du sang, chez les insectes. IIe Partie. Les larves des Odonates. Arch Zool Exp Gen 56:445–490

    Google Scholar 

  • Chaudonneret J (1950) La morphologie céphalique deThermobia domestica (Packard) (Insecte Apterygote Thysanoure). Ann Sci Nat Zool Paris 11 Ser 12:145–302

    Google Scholar 

  • Clarke KU (1979) Visceral anatomy and arthropod phylogeny. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 467–549

    Google Scholar 

  • Denis JR, Bitsch J (1973) Morphologie de la tète des insectes. In: Grásse PP (ed) Traité de Zoologie, vol VIII: Insectes, Fasc 1. Masson, Paris, pp 1–593

    Google Scholar 

  • Dohle W (1980) Sind die Myriapoden eine monophyletische Gruppe? Abh Naturwiss Ver Hamburg NF 23:45–104

    Google Scholar 

  • Dohle W (1985) Phylogenetic pathways in the Chilopoda. Bijdr Dierk 55:55–66

    Google Scholar 

  • Dohle W (1988) Myriapoda and the ancestry of insects. Manchester Polytechnic and British Myriapod Group, Manchester, pp 1–28

    Google Scholar 

  • Dubosq Q (1898) Recherches sur les Chilopodes. Arch Zool Exp Gen 3 Ser 6:481–650

    Google Scholar 

  • Fahlander K (1938) Beiträge zur Anatomie und systematischen Einteilung der Chilopoden. Zool Bidr Uppsala 17:1–148

    Google Scholar 

  • Fung YC (1984) Biodynamics: circulation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gundel M, Penzlin H (1978) The neuronal connections of the frontal ganglion of the cockroachPeriplaneta americana. A histological and iontophoretical study. Cell Tissue Res 193:353–371

    Google Scholar 

  • Hennig W (1969) Die Stammesgeschichte der Insekten. Kramer, Frankfurt

    Google Scholar 

  • Hertel W, Pass G, Penzlin H (1985) Electrophysiological investigation of the antennal heart ofPeriplaneta americana and its reactions to proctolin. J Insect Physiol 31:563–572

    Google Scholar 

  • Hertel W, Pass G, Penzlin H (1988) The effects of the neuropeptide proctolin and of octopamine on the antennal heart ofPeriplaneta americana. Symp Biol Hung 36:351–362

    Google Scholar 

  • Imms AD (1939) On the antennal musculature in insects and other arthropods. Q J Microsc Sci 81:273–320

    Google Scholar 

  • Jones JC (1977) The circulatory system of insects. Thomas, Springfield

    Google Scholar 

  • Kaley G, Altura BM (1977) Microcirculation. 2 vols University Park, Baltimore

    Google Scholar 

  • Kapitskii SV (1984) Morphological studies on the antennae in the male cockroachPeriplaneta americana (in Russian). Zh Evol Biokhim Fiziol 20:79–85

    Google Scholar 

  • Kristensen NP (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Z Zool Syst Evolutionsforsch 13:1–44

    Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Ann Rev Entomol 26:135–157

    Google Scholar 

  • Leiber G (1935) Beiträge zur vergleichenden Anatomie des Gefäßsystems der Diplopoden. Zool Jahrb Anat 59:333–354

    Google Scholar 

  • Manton SM (1977) The Arthropoda: habits, functional morphology, and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Marks EP, Lawson FA (1962) A comparative study of the dictyopteran ovipositor. J Morphol 111: 139–171

    Google Scholar 

  • Matsuda R (1965) Morphology and evolution of the insect head. Mem Am Entomol Inst 4:1–334

    Google Scholar 

  • McLaughlin PA (1983) Internal anatomy. In: Bliss DE (ed) The Biology of Crustacea, vol 5. Academic Press, New York London, pp 1–52

    Google Scholar 

  • Meyer E (1931) Über den Blutkreislauf der Ephemeriden. Z Morphol Ökol Tiere 22:1–52

    Google Scholar 

  • Miller TA (1985) Structure and physiology of the circulatory system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 3. Pergamon, Oxford, pp 289–353

    Google Scholar 

  • Moulins M (1968) Contribution a la connaissance anatomique des Plécoptères: la région céphalique de la larve deNemoura cinerea (Nemouridae). Ann Soc Ent Fr 4:91–143

    Google Scholar 

  • Moulins M (1969) Etude anatomique de l'hypopharynx deForficula auricularia L. (Insecte, Dermaptère): Téguments, musculature, organs sensoriels et innervations. Interprétation morphologique. Zool Jahrb Anat 86:1–27

    Google Scholar 

  • Nagashima T (1982) Anatomy ofGalloisiana nipponensis (Caudell et King). Part 1. Skeleto-muscular system of the head. In: Ando H (ed) Biology of the Notoptera. Kashiyo-Insatsu, Napano, pp 113–135

    Google Scholar 

  • Nutting WL (1951) A comparative anatomical study of the heart and accessory structures of the orthopteroid insects. J Morphol 89:501–597

    Google Scholar 

  • Pass G (1980) The anatomy and ultrastructure of the antennal circulatory organs in the cockchafer beetleMelolontha melolontha L. (Coleoptera, Scarabaeidae). Zoomorphology 96:77–89

    Google Scholar 

  • Pass G (1985) Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta). J Morphol 185:255–268

    Google Scholar 

  • Pass G (1987) “Cercus heart” in stoneflies — a new type of accessory circulatory organ in insects. Naturwissenschaften 74:440–441

    Google Scholar 

  • Pass G (1988) Functional morphology and evolutionary aspects of unusual antennal circulatory organs inLabidura riparia Pallas (Labiduridae),Forficula auricularia L. andChelidurella acanthopygia Géné (Forficulidae) (Dermaptera: Insecta). Int J Insect Morphol Embryol 17:103–112

    Google Scholar 

  • Pass G, Agricola H, Birkenbeil H, Penzlin H (1988 a) Morphology of neurones associated with the antennal heart ofPeriplaneta americana (Blattodea, Insecta). Cell Tissue Res 253:319–326

    Google Scholar 

  • Pass G, Sperk G, Agricola H, Baumann E, Penzlin H (1988 b) Octopamine in a neurohaemal area within the antennal heart of the American cockroach. J Exp Biol 135:495–498

    Google Scholar 

  • Pass G, Sperk G, Agricola H, Baumann E, Penzlin H (1989) The neurohemal area in the antennal heart of the cockroachPeriplaneta americana: structure and biochemical analysis. Gen Comp Endocrinol 74:273–274

    Google Scholar 

  • Pawlowa M (1895) Über ampullenartige Blutcirculationsorgane im Kopfe verschiedener Orthopteren. Zool Anz 18:7–13

    Google Scholar 

  • Penzlin H (1985) Stomatogastric nervous system. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 5. Pergamon, Oxford, pp 371–406

    Google Scholar 

  • Pinet JM (1964) Les coeurs accessoires antennaires deRhodnius prolixus Stal. (Heteroptera, Reduviidae). Bull Soc Zool Fr 89:443–449

    Google Scholar 

  • Rähle W (1970) Untersuchungen an Kopf und Prothorax vonEmbia ramburi Rimsky-Korsakow, 1906. Zool Jahrb Anat 87:248–330

    Google Scholar 

  • Rajulu GS (1967) Antennal pulsatile organs inScolopendra morsitans (Chilopoda: Myriapoda). Curr Sci 36:242–243

    Google Scholar 

  • Remington CL (1955) The “Apterygota”. A century of progress in the natural sciences. Bull Calif Acad Sci, San Francisco, 1955:221–232

    Google Scholar 

  • Rilling G (1968)Lithobius forficatus. Fischer, Stuttgart

    Google Scholar 

  • Ruppert EE, Carle KJ (1983) Morphology of metazoan circulatory systems. Zoomorphology 103:193–208

    Google Scholar 

  • Scholl G (1969) Die Embryonalentwicklung des Kopfes und Prothorax vonCarausius morosus Br. (Insecta, Phasmida). Z Morphol Ökol Tiere 65:1–142

    Google Scholar 

  • Schram FR (1986) Crustacea. Oxford Univ Press, New York Oxford

    Google Scholar 

  • Schwermer W (1914) Beiträge zur Biologie und Anatomie vonPerla marginata Scopoli. Zool Jahrb Anat 37:267–312

    Google Scholar 

  • Seifert G, Rosenberg J (1973) Poröse Blutgefäße beiScutigera coleoptrata L. (Chilopoda, Notostigmophora). Experientia 29:1156–1157

    Google Scholar 

  • Seifert G, Rosenberg J (1978) Feinstruktur der Herzwand des DoppelfüßersOxidus gracilis (Diplopoda: Paradoxosomatidae) und allgemeine Betrachtungen zum Aufbau der Gefäße von Tracheata und Onychophora. Ent Germ 4:224–233

    Google Scholar 

  • Selman BJ (1965) The circulatory system of the alder flySialis lutraria. Proc Zool Soc Lond 144:487–535

    Google Scholar 

  • Siewing R (1956) Untersuchungen zur Morphologie der Malacostraca (Crustacea). Zool Jahrb Anat 75:39–176

    Google Scholar 

  • Siewing R (1963a) Studies in malacostracan morphology: results and problems. Phylogeny and evolution of Crustacea. Mus Comp Zool, Cambridge Massach: 85–103

    Google Scholar 

  • Siewing R (1963b) Zum Problem der Arthropodenkopfsegmentierung. Zool Anz 170:429–468

    Google Scholar 

  • Snodgrass RE (1960) Facts and theories concerning insect head. Smithson Misc Collect 138:1–61

    Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of symphyla based on a study ofHanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study ofPauropus silvaticus Tiegs. Part I. Q J Microsc Sci 88:165–267

    Google Scholar 

  • Tiegs OW, Manton SM (1958) The evolution of the Arthropoda. Biol Rev 33:225–337

    Google Scholar 

  • Tjønneland A, Økland S, Nylund A (1987) Evolutionary aspects of the arthropod heart. Zool Scr 16:167–175

    Google Scholar 

  • Vayssière A (1882) Recherches sur l'organisation des larves des éphémérines. Ann Sci Nat Zool (Paris) 13:1–137

    Google Scholar 

  • Wasserthal LT (1982) Antagonism between haemolymph transport and tracheal ventilation in an insect wing (Attacus atlas L.). A disproof of the generalized model of insect wing circulation. J Comp Physiol 147:27–40

    Google Scholar 

  • Weber H (1952) Morphologie, Histologie und Entwicklungsgeschichte der Articulata. Fortschr Zool 9:18–231

    Google Scholar 

  • Weidner H (1982) Morphologie, Anatomie und Histologie. In: Helmcke JG, Starck D, Wermuth H (eds) Handbuch der Zoologie (Gegr. von W. Kükenthal), vol IV/2. Hälfte: Insecta/1. Teil/ 11. Gruyter, Berlin New York, pp 1–531

    Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships — the phylogeneticsystematic approach. Z Zool Syst Evolutionsforsch 24:19–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pass, G. Antennal circulatory organs in Onychophora, Myriapoda and Hexapoda: Functional morphology and evolutionary implications. Zoomorphology 110, 145–164 (1991). https://doi.org/10.1007/BF01632871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01632871

Keywords

Navigation