Skip to main content
Log in

Path integrals on curved manifolds

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correctionΔVh 2 from the classical Lagrangian ℒ, i.e. the correct effective Lagrangian to be used in the path integral is ℒeff = ℒ−ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: Thed-dimensional rotator, i.e. the motion on the sphereS d−1, the path integral ind-dimensional polar coordinates, the exact treatment of the hydrogen atom inR 2 andR 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Arthurs: Proc. Roy. Soc. Lond. A 313 (1969) 445

    Google Scholar 

  2. M. Böhm, G. Junker: Universität Würzburg preprint, Dec. 1986

  3. A. Chen: Phys. Rev. A 22 (1980) 333

    Google Scholar 

  4. B.S. DeWitt: Rev. Mod. Phys. 29 (1957) 377

    Google Scholar 

  5. D. Elworthy, A. Truman: J. Math. Phys. 22 (1981) 2144

    Google Scholar 

  6. I.H. Duru: Phys. Rev. D 28 (1983) 2689

    Google Scholar 

  7. I.H. Duru, H. Kleinert: Phys. Lett. 84B (1979) 185; I.H. Duru, H. Kleinert: Fortschr. Phys. 30 (1982) 401

    Google Scholar 

  8. J.S. Dowker, I.W. Mayes: Proc. Roy. Soc. Lond. A 327 (1972) 131

    Google Scholar 

  9. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Higher transcendental functions. Vol. II. New York: McGraw Hill 1985

    Google Scholar 

  10. C.C. Gerry, A. Inomata: Phys. Lett. 84A (1981) 172

    Google Scholar 

  11. J.L. Gervais, A. Jevicki: Nucl. Phys. B 110 (1976) 93

    Google Scholar 

  12. I.S. Gradshteyn, I.M. Ryzhik: Table of integrals, series and products, London, New York: Academic Press 1980

    Google Scholar 

  13. C. Grosche, F. Steiner: Phys. Lett. 123A (1987) 319

    Google Scholar 

  14. C. Grosche, F. Steiner:DESY preprint 87-103

  15. M.C. Gutzwiller: J. Math. Phys. 8 (1967) 1979)

    Google Scholar 

  16. A.C. Hirshfeld: Phys. Lett. 67A (1978) 5

    Google Scholar 

  17. R. Ho, A. Inomata: Phys. Rev. Lett. 48 (1982) 231

    Google Scholar 

  18. A. Inomata: Phys. Lett. 101A (1984) 253

    Google Scholar 

  19. A. Inomata: Phys. Lett. 87A (1982) 387

    Google Scholar 

  20. A. Inomata: Bielefeld Encounters in Physics and Mathematics VII; Path Integrals from meV to MeV, 1985, p. 433. M.C. Gutzwiller et al. (eds.) Singapore: World Scientific 1986

    Google Scholar 

  21. G. Junker, A. Inomata: Bielefeld Encounters in Physics and Mathematics VII. Path integrals from meV to MeV, 1985, p. 315. M.C. Gutzwiller et al. (eds.) Singapore: World Scientific 1986

    Google Scholar 

  22. H. Kleinert: Phys. Lett. A 120 (1987) 361

    Google Scholar 

  23. F. Langouche, D. Roekaerts, E. Tirapegui: Functional integration and semiclassical expansions. Dordrecht: Reidel 1982

    Google Scholar 

  24. T.D. Lee: Particle Physics and Introduction to Field Theory; Harwood: Academic Press 1981

    Google Scholar 

  25. H. Leschke, M. Schmutz: Z. Phys. B-Condensed Matter B 27 (1977) 85

    Google Scholar 

  26. M.S. Marinov: Phys. Rep. 60 (1980) 1

    Google Scholar 

  27. M.S. Marinov, M.V. Terentyev: Fortschr. Phys. 27 (1979) 511

    Google Scholar 

  28. D.C. McLaughlin, L.S. Schulman: J. Math. Phys. 12 (1971) 2520

    Google Scholar 

  29. M. Mizrahi: J. Math. Phys. 16 (1975) 2201

    Google Scholar 

  30. M. Omote: Nucl. Phys. B 120 (1977) 325

    Google Scholar 

  31. M. Omote, H. Sato: Progr. Theor. Phys. 47 (1972) 1367

    Google Scholar 

  32. K. Pak, I. Sökmen: Phys. Lett. 103A (1984) 298

    Google Scholar 

  33. K. Pak, I. Sökmen: Phys. Rev. A 30 (1984) 1629

    Google Scholar 

  34. A. Patrascioiu: Phys. Rev. Lett. 54 (1985) 1102

    Google Scholar 

  35. A. Patrascioiu, J.L. Richard: Lett. Math. Phys. 9 (1985) 191

    Google Scholar 

  36. W. Pauli: Handbuch der Physik, V/1, Springer 1958

  37. D. Peak, A. Inomata: J. Math. Phys. 10 (1969) 1422

    Google Scholar 

  38. M. Reed, B. Simon: Methods of modern mathematical physics. London, New York: Academic Press 1975

    Google Scholar 

  39. F. Steiner: Phys. Lett. 106A (1984) 356

    Google Scholar 

  40. F. Steiner: Phys. Lett. 106A (1984) 363

    Google Scholar 

  41. F. Steiner: Bielefeld Encounters in Physics and Mathematics VII; Path Integrals from meV to MeV. 1985, p. 335. M.C. Gutzwiller et al. (eds.) Singapore: World Scientific 1986

    Google Scholar 

  42. T. Suzuki, A.C. Hirshfeld, H. Leschke: Progr. Theor. Phys. 63 (1980) 287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Graduiertenstipendium Universität Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosche, C., Steiner, F. Path integrals on curved manifolds. Z. Phys. C - Particles and Fields 36, 699–714 (1987). https://doi.org/10.1007/BF01630607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01630607

Keywords

Navigation