Skip to main content
Log in

Prime field decompositions and infinitely divisible states on Borchers' tensor algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize some notions of probability theory and theory of group representations to field theory and to states on the Borchers algebraS. It is shown that every field (relativistic and Euclidean, ...) can be decomposed into a countable number of prime fields and an infinitely divisible field. In terms of states this means that every state onS is a product of an infinitely divisible state and a countable number of prime states, and in this formulation it applies equally well to correlation functions of statistical mechanics and to moments of linear stochastic processes overS orD. Necessary and sufficient conditions for infinitely divisible states are given. It is shown that the fields of the ø 42 -theory are either prime or contain prime factors. Our results reduce the classification problem of Wightman and Euclidean fields to that of prime fields and infinitely divisible fields. It is pointed out that prime fields are relevant for a nontrivial scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers, H. J.: On the structure of the algebra of field operators. Nuovo Cimento24, 214 (1962)

    Google Scholar 

  2. Borchers, H. J.: Algebraic aspects of Wightman field theory. In: Sen. R. N., Weil, C. (Eds.): Statistical mechanics and field theory. Haifa Lectures 1971. New York: Halsted Press 1972

    Google Scholar 

  3. Wyss, W.: On Wightman's theory of quantized fields. In: Lectures in theoretical physics. Boulder: University of Colorado 1968, New York: Gordon and Breach 1969

    Google Scholar 

  4. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969

    Google Scholar 

  5. Loève, M.: Probability theory. Second edition. Princeton: van Nostrand 1960

    Google Scholar 

  6. Streater, R. F.: A continuum analogue of the lattice gas. Commun. math. Phys.12, 226 (1969)

    Google Scholar 

  7. Guichardet, A.: Symmetric Hilbert spaces and related topics. Lecture Notes in Mathematics. (Chapter 4.) Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  8. Lukacs, E.: Characteristic functions, 2nd ed. London: Griffin 1970

    Google Scholar 

  9. Gelfand, I. M., Vilenkin, N. Ya.: Generalized functions, Vol. 4, Chapter III, § 4. New York: Academic Press 1964

    Google Scholar 

  10. Yngvason, J.: On the algebra of test functions for field operators. Commun. math. Phys.34, 315 (1973)

    Google Scholar 

  11. Trèves, F.: Topological vector spaces, distributions, and kernels, cf. Theorem 45.2. New York: Academic Press 1967

    Google Scholar 

  12. Velo, G., Wightman, A. (Editors): Constructive quantum field theory. Lecture Notes in Physics 25. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  13. Simon, B.: TheP(ø)2 Euclidean (quantum) field theory. Princeton: Princeton University Press 1974

    Google Scholar 

  14. Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal.12, 97 (1973)

    Google Scholar 

  15. Hegerfeldt, G. C.: From Euclidean to relativistic fields and on the notion of Markoff fields. Commun. math. Phys.35, 155 (1974)

    Google Scholar 

  16. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. II. Commun. math. Phys.42, 281 (1975)

    Google Scholar 

  17. Lebowitz, J.: GHS and other inequalities. Commun. math. Phys.35, 87 (1974)

    Google Scholar 

  18. Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2-model and other applications of high temperature expansions. In. Constructive quantum field theory. Lecture Notes in Physics 25, cf. p. 172. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  19. Newman, C. M.: Inequalities for Ising models and field theories which obey the Lee-Yang-theorem. Commun. math. Phys.41, 1 (1975)

    Google Scholar 

  20. Jost, R.: The general theory of quantized fields, p. 74. Providence: Am. Math. Soc. 1965

    Google Scholar 

  21. Rinke, M.: A remark on asymptotic completeness of local fields. Commun. math. Phys.12, 324 (1969)

    Google Scholar 

  22. Uhlmann, A.: Über die Definition der Quantenfelder nach Wightman und Haag. Wiss. Z. Karl-Marx-Univ. Leipzig, Math. Naturw. Reihe11, 213 (1962)

    Google Scholar 

  23. Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics. I. Commun. math. Phys.23, 199 (1971)

    Google Scholar 

  24. Streater, R. F.: Infinitely divisible representations of Lie algebras. Z. Wahrscheinlichkeitstheorie verw. Geb.19, 67–80 (1971)

    Google Scholar 

  25. Mathon, D., Streater, R. F.: Infinitely divisible representations of Clifford algebras. Z. Wahrscheinlichkeitstheorie verw. Geb.20, 308–316 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. S. Wightman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegerfeldt, G.C. Prime field decompositions and infinitely divisible states on Borchers' tensor algebra. Commun.Math. Phys. 45, 137–151 (1975). https://doi.org/10.1007/BF01629244

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01629244

Keywords

Navigation