Skip to main content

Advertisement

Log in

The oculomotor nuclear complex in humans

Le complexe nucléaire du nerf oculomoteur de l'homme — Microanatomie et importance clinique

Microanatomy and clinical significance

  • Original Articles
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Summary

This study has been performed to define better the anatomical structure of the oculomotor nuclear complex and its neuronal components. The oculomotor nuclear complex was examined in fixed and serially sectioned midbrains from 12 adult subjects free from neurological diseases. The complex included the somatic portion, (formed by multipolar motor neurons), and the parasympathetic portion, (formed by oval or fusiform preganglionic cells), on each side of the median raphe. The somatic portion consisted of the lateral somatic cell column and the caudal central nucleus. The somatic column measured from 0.2×0.1 mm to 3.4×1.4 mm (X=2.4×1.2 mm) in transverse section. It was divided into the principal, intrafascicular and extrafascicular parts. The principal part was subdivided into the dorsal, intermediate and ventral portions. Isolated multipolar neurons were also found in the periaqueductal gray matter, the interstitial nucleus of Cajal, the Edinger-Westphal nucleus and the fibre bundles of the oculomotor nerve. These cells most likely represent the displaced motor neurons of the oculomotor nerve. The caudal central nucleus was 0.8×0.6 mm in size. The Edinger-Westphal nucleus consisted of the rostral, ventral and dorsal parts; the longest rostrocaudal diameter of this nucleus measured 7.1 mm. The anatomical data of our study are relevant clinically and allow explanation of the neurologic signs following complete or partial lesions of the oculomotor nuclear complex.

Résumé

Cette étude a été entreprise pour mieux définir la structure anatomique du complexe nucléaire du n. oculomoteur et ses composants neuronaux. Le complexe nucléaire du n. oculomoteur a été examiné sur les troncs cérébraux fixés et coupés en série, provenant de 12 adultes exempts de maladie nerveuse. Le complexe comprenait la portion somatique (formée par des neurones moteurs multipolaires) et la partie parasympathique (formée par des cellules pré-ganglionnaires ovales ou fusiformes) de chaque côté du raphé médian. La portion somatique était formée par la colonne somatique latérale et le noyau caudal central. La colonne somatique mesurait entre 0,2 × 0,1 mm et 3,4 × 1,4 mm (moyenne = 2,4 × 1,2 mm) sur les coupes transversales. Elle était divisée en parties principale, intrafasciculaire et extrafasciculaire. La partie principale était subdivisée en portions dorsale, intermédiaire et ventrale. Des neurones multipolaires isolés ont également été trouvés dans la substance grise péri-aqueductale, le noyau interstitiel de Cajal, le noyau d'Edinger-Westphal, et les faisceaux des fibres du n. oculomoteur. Ces cellules représentent très vraisemblablement des neurones moteurs déplacés du n. oculomoteur. Le noyau caudal central mesurait 0,8 × 0,6 mm. Le noyau d'Edinger-Westphal comprenait les parties rostrale, ventrale et dorsale ; son plus long diamètre rostro-caudal mesurait 7,1 mm. Les documents anatomiques tirés de notre étude sont importants en clinique et permettent d'expliquer les signes neurologiques consécutifs à des lésions complètes ou partielles du complexe nucléaire du n. oculomoteur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahene WA, Dunhill MS (1982) Morphometry. Arnold, London, pp 124–149

    Google Scholar 

  2. Baloh RW, Furman JM, Yee RD (1985) Dorsal midbrain syndrome: Clinical and oculographic findings. Neurology 35: 54–60

    Google Scholar 

  3. Bannister R (1985) Brain's clinical neurology. Oxford University Press, London, pp 49–55

    Google Scholar 

  4. Biller J, Shapiro R, Evans LS, Haag JR, Fine M (1984) Oculomotor nuclear complex infarction. Clinical and radiological correlation. Arch Neurol 41: 985–987

    Google Scholar 

  5. Bogousslavsky J, Meinenberg O (1987) Eye movement disorders in brain stem and cerebellar stroke. Arch Neurol 44: 141–148

    Google Scholar 

  6. Buttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey. J Comp Neurol 197: 17–27

    Google Scholar 

  7. Buttner-Ennever JA, Buttner U, Cohen B, Baumgartner G (1982) Vertical gaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105: 125–149

    Google Scholar 

  8. Capra NF, Anderson KV, Atkinson RC (1985) Localization and morphometric analysis of masticatory muscle afferent neurons in the nucleus of the mesencephalic root of the trigeminal nerve in the cat. Acta Anat 122: 115–125

    Google Scholar 

  9. Carpenter MB, Pierson RJ (1973) Pretectal region and the pupillary light reflex. Anatomical analysis in the monkey. J Comp Neurol 149: 271–300

    Google Scholar 

  10. Carpenter MB, Pierson RJ (1980) Abducens internuclear neurons and their role in conjugate horizontal gaze. J Comp Neurol 189: 191–209

    Google Scholar 

  11. Carpenter MB, Sutin J (1983) Human Neuroanatomy. William & Wilkins, Baltimore, pp 426–431

    Google Scholar 

  12. Castaigne P, Lhermitte F, Buge A, Escourolle R, Hauw JJ, Lyon-Caen O (1981) Paramedian thalamic and midbrain infarcts: clinical and neuopathological study. Ann Neurol 10: 127–148

    Google Scholar 

  13. Clarke RJ, Coimbra CJP, Alessio ML (1985) Distribution of parasympathetic motoneurons in the oculomotor complex innervating the ciliary ganglion in marmoset (Callithrix Jaccus). Acta Anat 121: 53–58

    Google Scholar 

  14. Duvernoy HM (1978) Human brainstem vessels. Springer-Verlag, Berlin, pp 64–68

    Google Scholar 

  15. Ford SC, Schwartze MG, Weaver RG, Troost TB (1984) Mononuclear elevation paresis caused by an ipsilateral lesion. Neurology 34: 1264–67

    Google Scholar 

  16. Frontery JG (1958) Evaluation of the immediate effects of some fixatives upon the measurements of the brains of macaques. J Comp Neurol 109: 417–438

    Google Scholar 

  17. Gillroy J, Holliday PL (1982) Basic Neurology. Macmillan, New York, pp 20–26

    Google Scholar 

  18. Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252: 423–445

    Google Scholar 

  19. Loewy AD, Saper B, Ymodis ND (1978) Reevaluation of the efferent projections of the Edinger Westphal nucleus in the cat. Brain Res 141: 153–159

    Google Scholar 

  20. Mantyh PW (1982) The midbrain periaqueductal gray in the rat, cat and monkey: a Nissl, Weil and Golgi analysis. J Comp Neurol 204: 349–363

    Google Scholar 

  21. Marinkovich S, Milisavljevic M, Kovacevic M (1986) Interpeduncolar perforating branches of the posterior cerebral artery. Surg Neurol 26: 349–359

    Google Scholar 

  22. Marinkovich S, Milisavljevic M, Kovacevic M (1986) Anastomoses among the thalamoperforating branches of the posterior cerebral artery. Arch Neurol 43: 811–814

    Google Scholar 

  23. Mayhew TM, Momoh CK (1973) Contribution to the quantitative analysis of neuronal parameters: The effects of biased sampling procedures on estimates of neuronal volume, surface area and packing density. J Comp Neurol 148: 217–228

    Google Scholar 

  24. Oades RD, Halliday GM (1987) Ventral tegmental (AXO) system; neurobiology, anatomy and connectivity. Brain Res Rev 12: 117–165

    Google Scholar 

  25. Olszewsky J, Baxter D (1982) Cytoarchitecture of the human brain stem. Karger, Basel, pp 94–99

    Google Scholar 

  26. Porter J, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport horseradish peroxidase. J Comp Neurol 218: 208–219

    Google Scholar 

  27. Reagan TJ, Trautman JC (1978) Combined nuclear and supranuclear defects. A clinicopathologic study. Arch Neurol 35: 133–137

    Google Scholar 

  28. Sugimoto T, Itoh K, Mizuno N (1977) Localization of neurons giving rise to the oculomotor parasympathetic outflow: a HRP study in cat. Neurosci Lett 7: 301–305

    Google Scholar 

  29. Thames PB, Trobe JD, Ballinger WE (1984) Upgaze paralysis caused by lesion of the periaqueductal gray matter. Arch Neurol 41: 437–440

    Google Scholar 

  30. Warwick R (1984) Representation of the extraocular muscles in the oculomotor nuclei of the monkey. J Comp Neurol 98: 449–504

    Google Scholar 

  31. Warwick R (1953) The identity of the posterior dorsocentral nucleus of Panegrossi. J Comp Neurol 99: 509–612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donzelli, R., Marinkovic, S., Brigante, L. et al. The oculomotor nuclear complex in humans. Surg Radiol Anat 20, 7–12 (1998). https://doi.org/10.1007/BF01628108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01628108

Key words

Navigation