Surgical and Radiologic Anatomy

, Volume 18, Issue 4, pp 263–269 | Cite as

Anatomic bases of a vascularized allogenic knee joint transplantation: arterial blood supply of the human knee joint

  • MH Kirschner
  • J Menck
  • GO Hofmann
Anatomic Bases Of Medical, Radiological And Surgical Techniques


The vitality of a graft in a vascularized allogenic knee joint transplantation in humans will depend strongly on maintaining the arterial blood supply to the bone. As can be demonstrated in injected specimens on cadavers, only periostal aa. are important to ensure the blood supply of the human knee joint. The main arteries have defined nutritive areas. According to our results access to the vessels should most probably be conducted from the dorsal side of the knee. During the explantation the popliteal a. should be ligated proximally as high up as possible and distally just above its trifurcation. The articular branch of the descending genicular a. of both the donor and the recipient can be ligated because of a rich anastomotic network. The medial and lateral inferior genicular aa. of the donor should be ligated ventrally as far forward as possible. One should, above all, preserve the medial inferior genicular a. of the donor in order not to endanger the medial part of the distal segment of the graft. If an operation is to be performed according to the results of our anatomical studies, vascularized allogenic knee joint transplantations should be successful from an anatomical point of view.

Key words

Allogenic bone transplantation Knee joint Vascularized graft Blood supply 

Bases anatomiques de la transplantation d'une allogreffe vascularisée de genou : vascularisation artérielle de l'articulation du genou humain


La vitalité d'une greffe lors d'une transplantation d'allogreffe vascularisée de genou dépendra principalement du maintien de la vascularisation artérielle de l'os. Comme on peut le montrer sur des spécimens cadavériques injectés, seules les artères périostées sont importantes pour assurer la vascularisation artérielle du genou humain. Les principales artères ont des territoires définis. En fonction de nos résultats, l'accès aux vaisseaux serait au mieux mené par le versant dorsal du genou. Pendant le prélèvement, l'a. poplitée devrait être sectionnée proximalement aussi haut que possible, et distalement juste au-dessus de sa trifurcation. Le rameau articulaire de l'a. descendante du genou du donneur et celui du receveur peuvent être liées en raison du riche réseau anastomotique. Les aa. géniculées inféro-médiale et inféro-latérale du donneur devraient être liées aussi loin que possible en avant. Il faudrait par dessus tout préserver l'artère géniculée inféromédiale du donneur pour éviter de léser la partie médiale du segment distal de la greffe. Si une transplantation d'un allogreffe vascularisée de genou devait être réalisée en tenant compte du résultat de nos travaux, elle devrait être un succès du point de vue anatomique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebi M, Regazzoni P, Perren SM, Harder F (1986) Microsurgically revascularized bone allografts with immunosuppression with cyclosporine. Transplantation 42: 564–568Google Scholar
  2. 2.
    Anseroff NJ (1934) Die Arterien der langen Knochen des Menschen. Zeitschrift für Anatomie und Entwicklungsgeschichte 103: 793–812Google Scholar
  3. 3.
    Bailleux A, Brennwald J, Rosso R, Aebi M, Regazzoni P (1990) Knochen- und Gelenk-transplantation. Helv Chir Acta 57: 79–82Google Scholar
  4. 4.
    Borel JF, Feurer C, Gubler HU, Stähelin H (1976) Biological effects of cyclosporin A: A new antilymphocytic agent. Agents Actions 6:468–475Google Scholar
  5. 5.
    Calne RY, Thirn S, McMaster P, Craddock GN, White DJG, Evans DB, Dunn DC, Pentlow BD (1978) Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet II: 1323–1327Google Scholar
  6. 6.
    Crock HV (1962) The arterial supply and venous drainage of the bones of the human knee joint. Anat Rec 144: 199–217Google Scholar
  7. 7.
    Doi K, de Santis G, Singer DI, Hurley JV, McC O'Brian B, McKay SM, Hickey MJ, Murphy BF (1989) The effect of immunosuppression on vascularized allografts. A preliminary report. J Bone Joint Surg [Br] 71-B: 576–582Google Scholar
  8. 8.
    Goldberg VM, Heiple KG (1983) Experimental hemijoint and whole-joint transplantation. Clin Orthop 174: 43–53Google Scholar
  9. 9.
    Goldberg VM, Powell A, Shaffer JW, Zika J, Bos GD, Heiple KG (1985) Bone grafting: Role of histocompatibility in transplantation. J Orthop Res 3: 389–404Google Scholar
  10. 10.
    Gotfried Y, Yaremchuk MJ, Randolph MA, Weiland AJ (1987) Histological characteristics of acute rejection in vascularized allografts of bone. J Bone Joint Surg [Am] 69-A: 410–425Google Scholar
  11. 11.
    Hallock GG, Anous MM, Sherdian BC (1993) The surgical anatomy of the principal nutrient vessel of the tibia. Plast Reconstr Surg 92: 49–54Google Scholar
  12. 12.
    Hassenpflug J (1986) Presentation of intraosseous vascularization by sequential maceration. Arch Orthop Trauma Surg 105: 73–78Google Scholar
  13. 13.
    Herndon CH, Chase SW (1952) Experimental studies in the transplantation of whole joints. J Bone Joint Surg [Am] 34-A: 564–578Google Scholar
  14. 14.
    Hofmann GO (1991) Immunologischer und hygienischer Stellenwert der allogenen Knochentransplantation für die Wiederherstellungschirurgie. Akt Chir 26: 126–133Google Scholar
  15. 15.
    Hofmann GO, Kirschner MH, Bühren V, Land W (1995) Allogeneic vascularized transplantation of a human femoral diaphysis under cyclosporin A immunosuppression. Transpl Int 8: 418–419Google Scholar
  16. 16.
    Hofmann GO, Kirschner MH, Land W, Bühren V (1996) Allogeneic vascularized transplantation of human femoral diaphysis under ciclosporin A employing internal compression nails. In: Jaloovara P, Vécsei V (eds) Osteosynthesis International. Druckhaus Mayer Verlag, Erlangen, pp 479–484Google Scholar
  17. 17.
    Judet H, Padovani JP (1973) Transplantation d'articulation complète. Rev Chir Orthop 59: 125–138Google Scholar
  18. 18.
    Kirschner M (1916) Die künstliche Verlängerung von Beinen, die nach Frakturen, namentlich nach Schußfrakturen, mit starker Verkürzung geheilt sind. Beiträge zur klinischen Chirurgie 100: 329–370Google Scholar
  19. 19.
    Lang J, Wachsmuth W (1972) Praktische Anatomie 14, Bein und Statik. Springer, New York, pp 34–44Google Scholar
  20. 20.
    Lexer E (1908) Die Verwendung der freien Knochenplastik nebst Versuchen über Gelenkversteifung und Gelenktransplantation. Arch Klin Chir 86: 939–954Google Scholar
  21. 21.
    Lexer E (1908) Substitution of whole or half joints from freshly amputated extremities by free plastic operation. Surg Gynecol Obstet 6: 601–607Google Scholar
  22. 22.
    Lexer E (1925) Joint transplantations and arthroplasty. Surg Gynecol Obstet 40: 782–809Google Scholar
  23. 23.
    Lüdinghausen M von, Mayer E (1975) Altersabhängige Veränderungen der intraossären Arterien des Femur. Verh Anat Ges 69: 139–144Google Scholar
  24. 24.
    Menck J, Bertram C, Lierse W (1992) Sectorial angioarchitecture of the human tibia. Acta Anat 143: 67–73Google Scholar
  25. 25.
    Polster J (1968) Die funktionellen Verteilungsräume der Knochendurchblutung und die Durchblutungswertigkeit von Femur und Tibia. Ergebnisse der Chirurgie und Orthopädie 51: 66–104Google Scholar
  26. 26.
    Rogers WM, Gladstone H (1950) Vascular foramina and arterial supply of the distal end of the femur. J Bone Joint Surg [Am] 32-A: 867–874Google Scholar
  27. 27.
    Rosso R, Schäfer D, Fricker R, Schläpfer R, Brennwald J, Heberer M (1993) Experimentelle vaskularisierte Kniegelenkstransplantationen an einem Hundemodell: Frühergebnisse nach Allotransplantation und Retransplantation. Langenbecks Arch Chir Suppl Chir Forum, pp 363–367Google Scholar
  28. 28.
    Scapianelli R (1968) Studies on the vasculature of the human knee joint. Acta Anat 70: 305–331Google Scholar
  29. 29.
    Shim SS, Leung G (1986) Blood supply of the knee joint. A microangiographic study. Clin Orthop 208: 119–125Google Scholar
  30. 30.
    Taylor GI, Miller GDH, Ham FJ (1975) The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg 55: 533–544Google Scholar
  31. 31.
    Yaremchuk MJ, Sedacca T, Schiller AL, May JW (1983) Vascular knee allograft transplantation in a rabbit model. Plast Reconstr Surg 71: 461–472Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • MH Kirschner
    • 1
  • J Menck
    • 2
  • GO Hofmann
    • 3
  1. 1.Department of SurgeryUniversity of Munich, Klinikum GroßhadernMünchenGermany
  2. 2.Institute of Anatomy, Division of NeuroanatomyUniversity of HamburgHamburgGermany
  3. 3.Trauma Clinic MurnauMurnau/StaffelseeGermany

Personalised recommendations