Hydrophobic characteristics ofBacillus spores


Spores from severalBacillus species displayed a strong affinity for hexadecane and other hydrophobic solvents. The binding ofBacillus subtilis spore suspensions to octyl-Sepharose was enhanced by ammonium sulfate and other salts, but was inhibited by detergents. Treatment of spore suspensions with strong denaturants promoted their adherence to hexadecane, presumably by exposing hydrophobic residues in coat proteins. The hydrophobic characteristics of spores may be important in the ecological adaptation of certain bacteria.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. 1.

    Boyles, W. A., Lincoln, R. E. 1958. Separation and concentration of bacterial spores and vegetative cells by foam flotation. Applied Microbiology6:327–334.

    Google Scholar 

  2. 2.

    Cole, H., Ezzell, J., Keller, K. F., Doyle, R. J. 1984. Differentiation ofBacillus anthracis and otherBacillus species by lectins. Journal of Clinical Microbiology19:48–53.

    Google Scholar 

  3. 3.

    Doyle, R. J., Nesbitt, W. E., Taylor, K. G. 1983. On the mechanism of adherence ofStreptococcus sanguis to hydroxylapatite. Federation of European Microbiological Societies Letters15:1–5.

    Google Scholar 

  4. 4.

    Hjerten, S. 1978. Fractionation of membrane protein by hydrophobic interaction chromatography and by chromatography on agarose equilibrated with a water-alcohol mixture of low or high pH. Journal of Chromatography159:85–91.

    Google Scholar 

  5. 5.

    Jenkinson, H. F., Lord, H. 1983. Protease deficiency and its association with defects in spore coat structure, germination, and resistance properties in a mutant ofBacillus subtilis. Journal of General Microbiology129:2727–2737.

    Google Scholar 

  6. 6.

    Jonsson, P., Wadstrom, T. 1983. High surface hydrophobicity ofStaphylococcus aureus as revealed by hydrophobic interaction chromatography. Current Microbiology8:347–353.

    Google Scholar 

  7. 7.

    Krieg, N. R. 1981. Enrichment and isolation, pp. 112–142. In: Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B. (eds.), Manual of methods for general bacteriology. Washington, DC: American Society for Microbiology.

    Google Scholar 

  8. 8.

    Lindahl, M., Faris, A., Wadstrom, T., Hjerten, S. 1981. A new test based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochimica et Biophysica Acta677:471–476.

    Google Scholar 

  9. 9.

    Miorner, H., Johansson, G., Kronvall, G. 1983. Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. Infection and Immunity39:336–343.

    Google Scholar 

  10. 10.

    Mobley, H. L. T., Doyle, R. J., Jolliffe, L. K. 1983. Cell wall-polypeptide complexes inBacillus subtilis. Carbohydrate Research116:113–125.

    Google Scholar 

  11. 11.

    Murrell, W. G. 1981. Biophysical studies on the molecular mechanisms of spore heat resistance and dormancy, pp. 64–77. In: Levinson, H. S., Sonenshein, A. L., Tipper, D. J. (eds.), Sporulation and germination. Washington, DC: American Society for Microbiology.

    Google Scholar 

  12. 12.

    Nesbitt, W. E., Doyle R. J., Taylor, K. G. 1982. Hydrophobic interactions and the adherence ofStreptococcus sanguis to hydroxylapatite. Infection and Immunity38:637–644.

    Google Scholar 

  13. 13.

    Ofek, I., Simpson, W. A., Beachey, E. H. 1982. Formation of molecular complexes between a structurally defined M protein and acylated and deacylated lipoteichoic acid ofStreptococcus pyogenes. Journal of Bacteriology149:426–433.

    Google Scholar 

  14. 14.

    Rosenberg, M., Gutnick, D., Rosenberg, E. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. Federation of European Microbiological Societies Letters9:29–33.

    Google Scholar 

  15. 15.

    Rosenberg, M., Bayer, E. A., Delarea, J., Rosenberg, E. 1982. Role of thin fimbriae in adherence and growth ofAcinetobacter calcoaceticus on hexadecane. Applied and Environmental Microbiology44:929–937.

    Google Scholar 

  16. 16.

    Shaltiel, S. 1974. Hydrophobic chromatography. Methods in Enzymology34:126–140.

    Google Scholar 

  17. 17.

    Tylewska, S. K., Hjerten, S., Wadstrom, T. 1979. Contribution of M protein to the hydrophobic surface properties ofStreptococcus pyogenes. Federation of European Microbiological Societies Letters6:249–253.

    Google Scholar 

  18. 18.

    Warth, A. D. 1978. Molecular structure of the bacterial spore. Advances in Microbial Physiology17:1–45.

    Google Scholar 

  19. 19.

    Watt, I. C. 1981. Water vapor adsorption byBacillus stearothermophilus endospores, pp. 253–255. In: Levinson, H. S., Sonenshein, A. L., Tipper, D. J. (eds.) Sporulation and germination. Washington, DC: American Society for Microbiology.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ronald J. Doyle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doyle, R.J., Nedjat-Haiem, F. & Singh, J.S. Hydrophobic characteristics ofBacillus spores. Current Microbiology 10, 329–332 (1984). https://doi.org/10.1007/BF01626560

Download citation


  • Sulfate
  • Ammonium
  • Coat Protein
  • Ammonium Sulfate
  • Hexadecane