Skip to main content

Zeta function regularization of path integrals in curved spacetime


This paper describes a technique for regularizing quadratic path integrals on a curved background spacetime. One forms a generalized zeta function from the eigenvalues of the differential operator that appears in the action integral. The zeta function is a meromorphic function and its gradient at the origin is defined to be the determinant of the operator. This technique agrees with dimensional regularization where one generalises ton dimensions by adding extra flat dimensions. The generalized zeta function can be expressed as a Mellin transform of the kernel of the heat equation which describes diffusion over the four dimensional spacetime manifold in a fith dimension of parameter time. Using the asymptotic expansion for the heat kernel, one can deduce the behaviour of the path integral under scale transformations of the background metric. This suggests that there may be a natural cut off in the integral over all black hole background metrics. By functionally differentiating the path integral one obtains an energy momentum tensor which is finite even on the horizon of a black hole. This energy momentum tensor has an anomalous trace.

This is a preview of subscription content, access via your institution.


  1. DeWitt, B.S.: Dynamical theory of groups and fields in relativity, groups and topology (eds. C. M. DeWitt and B. S. DeWitt). New York: Gordon and Breach 1964

    Google Scholar 

  2. DeWitt, B.S.: Phys. Rep.19C, 295 (1975)

    Google Scholar 

  3. McKean, H.P., Singer, J.M.: J. Diff. Geo.5, 233–249 (1971)

    Google Scholar 

  4. Gilkey, P.B.: The index theorem and the heat equation. Boston: Publish or Perish 1974

    Google Scholar 

  5. Candelas, P., Raine, D.J.: Phys. Rev. D12, 965–974 (1975)

    Google Scholar 

  6. Drummond, I.T.: Nucl. Phys.94B, 115–144 (1975)

    Google Scholar 

  7. Capper, D., Duff, M.: Nuovo Cimento23A, 173 (1974)

    Google Scholar 

  8. Duff, M., Deser, S., Isham, C.J.: Nucl. Phys.111B, 45 (1976)

    Google Scholar 

  9. Brown, L.S.: Stress tensor trace anomaly in a gravitational metric: scalar field. University of Washington, Preprint (1976)

  10. Brown, L.S., Cassidy, J.P.: Stress tensor trace anomaly in a gravitational metric: General theory, Maxwell field. University of Washington, Preprint (1976)

  11. Dowker, J.S., Critchley, R.: Phys. Rev. D13, 3224 (1976)

    Google Scholar 

  12. Dowker, J.S., Critchley, R.: The stress tensor conformal anomaly for scalar and spinor fields. University of Manchester, Preprint (1976)

  13. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D (to be published)

  14. Manor, Y.: Complex Riemannian sections. University of Cambridge, Preprint (1977)

  15. Feynman, R. P.: Magic without magic, (eds. J. A. Wheeler and J. Klaunder). San Francisco: W. H. Freeman 1972

    Google Scholar 

  16. DeWitt, B.S.: Phys. Rev.162, 1195–1239 (1967)

    Google Scholar 

  17. Fadeev, L.D., Popov, V.N.: Usp. Fiz. Nauk111, 427–450 (1973) [English translation in Sov. Phys. Usp.16, 777–788 (1974)]

    Google Scholar 

  18. Seeley, R.T.: Amer. Math. Soc. Proc. Symp. Pure Math.10, 288–307 (1967)

    Google Scholar 

  19. Ray, D.B., Singer, I.M.: Advances in Math.7, 145–210 (1971)

    Google Scholar 

  20. Gilkey, P.B.: Advanc. Math.15, 334–360 (1975)

    Google Scholar 

  21. 'tHooft, G.: Phys. Rev. Letters37, 8–11 (1976)

    Google Scholar 

  22. 'tHooft, G.: Computation of the quantum effects due to a four dimensional pseudoparticle. Harvard University, Preprint

  23. Hartle, J.B., Hawking, S.W.: Phys. Rev. D13, 2188–2203 (1976)

    Google Scholar 

  24. Adler, S., Lieverman, J., Ng, N.J.: Regularization of the stress-energy tensor for vector and scalar particles. Propagating in a general background metric. IAS Preprint (1976)

  25. Fulling, S.A., Christensen, S.: Trace anomalies and the Hawking effect. Kings College London, Preprint (1976)

Download references

Author information

Authors and Affiliations


Additional information

Communicated by R. Geroch

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hawking, S.W. Zeta function regularization of path integrals in curved spacetime. Commun.Math. Phys. 55, 133–148 (1977).

Download citation

  • Received:

  • Issue Date:

  • DOI:


  • Black Hole
  • Meromorphic Function
  • Zeta Function
  • Heat Kernel
  • Path Integral