Skip to main content
Log in

Heat flow and temperature gradients in Chile

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Summary

Conventional heat-flow measurements in Chile carried out by other workers are summarized. Between latitudes 26 – 29° S heat flow is consistently low (<42 mWm−2) excepting a site in the Andes slope (75.3 mWm−2). In Central Chile (33 °S) near Santiago, a value in the Andes (60.7 mWm−2) is lower than the value in the Santiago basin (78.7 mWm−2). Heat flow through the sea bottom around the Chile Ridge (about 44 – 48° S; 75 – 80° W) ranges between 25 and 414 mWm−2; heat-flow estimates based upon the location in depth of the phase of gas hydrates have also been carried out in this area. In Tierra del Fuego the only heat-flow value is 96.3 mWm−2. The present heat-flow studies in Chile do not allow any conclusions to be drawn on the general heat-flow distribution and its description within the frame of new global tectonics. Only some preliminary model results comparing heat-flow measurements in the area of the Chile Ridge to thermal effects produced by a ridge-trench collision may presently be partially adopted. A general discussion regarding the results from global seismic tomography, maximum depth of seismic coupling and thermal processes in Chile is also presented.

The silica geotemperature in the Santiago basin resulting from 257 groundwater analyses is 77.4±10.4 °C; the equivalent heat flow is 92.5±16.6 mWm−2 which is in agreement with the conventional heat-flow value in this area. Geochemical thermometry indicates fluid temperature at depth higher than 200 °C in some of the 33 hot-spring areas evaluated using SiO2, Na-K-Ca and Na-Li geothermometers. The evalutation of fluid rock equilibrium and CO2 - fugacities by means of relative Na, K, Mg and Ca contents of thermal waters indicates that only in El Tatio and Puchuldiza in Northern Chile have fluids attained partial equilibrium with both K-Na and K-Mg mineral systems. Other geothermal areas in the north, and many hot springs in Central Chile, correspond to immature waters which are generally unsuitable for the evaluation of K/Na and K/Mg equilibrium temperatures. In Central Chile the evaluation of some hot-spring waters in partial equilibrium condition indicate deep temperatures between 80 °C and 245 °C.

In the area of El Tatio the combined heat flow (conductive and convective) yields a value of 1465 mWm−2 with fluid circulating within 1 km of an underlying magmatic intrusion at 5 – 7 km depth. The water catchment area may be situated 20 km to the east of the geothermal area, with the underground fluid moving at a rate of about 1.3 kmy−1

Temperature logs in wells for oil prospection show that temperatures are affected by drilling disturbances. Some preliminary BHT estimates of gradients yield between 26.3°C km−1 and 72.4 °C km−1. Thermal conductivity and diffusivity data from these wells are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Muñoz: Flujo de calor en Chile con énfasis en las áreas de El Tatio y de la cuenca de Santiago. In: V.M. Hamza, A. Frangipani, A.E. Beck and F.B. Ribeiro (Editors), Proc. Int. Meeting on Geothermics and Geothermal Energy, Guarujá (Sao Paulo), 1986. Spec. Issue Rev. Brasileira Geofísica,5 (1987), 153–164.

    Google Scholar 

  2. S. Uyeda, T. Watanabe, E. Kausel, M. Kubo, Y. Yashiro: Report of heat-flow measurements in Chile. Bull. Earthq. Res. Inst., Tokyo,53 (1978), 131–163.

    Google Scholar 

  3. M. Muñoz: Radiogenic heat producltion and erosion process in Central Chile. In: Abstracts Int. Meeting on Terrestrial Heat Flow and the Structure of the Lithosphere, Bechyně 1991, p.60.

  4. V. M. Hamza, F. B. Ribeiro, E. A. Becker: Recent climatic change in the southerrn hemisphere. Abstracts Int. Meeting on Terrestrial Heat Flow and the Structure of the Lighosphere, Bechyně 1991, p.32.

  5. R. P. von Herzen: Heat-flow values from the south-eastern Pacific. Nature,183 (1959), 882–883.

    Article  Google Scholar 

  6. W. H. Diment, F. Ortiz, L. Silva, C. Ruiz: Terrestrial heat flow at two localities near Vallenar, Chile. Amer. Geophys. Un. Trans.,46 (1965), 175.

    Google Scholar 

  7. V. I. Keilis-Borok: The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction. Rev. Geophys.,28 (1990), 19–34.

    Article  Google Scholar 

  8. S. Uyeda, T. Watanabe: Preliminary report of terrestrial heat flow study in the South American continent; distribution of geothermal gradients. Tectonophysics,10 (1970), 235–242.

    Article  Google Scholar 

  9. E. M. Herron, S. C. Cande, B. R. Hall: An active spreading center collides with a subduction zone: A geophysical survey of the Chile margin triple junction. In: L.D. Kulm, J. Dymond, E. J. Dasch and D. M. Hussong (Editors), Nazca Plate: Crustal Formation and Andean Convergence. Geol. Soc. Am., Memoir154 (1981), 683–701.

    Article  Google Scholar 

  10. S. C. Cande, R. B. Leslie, J. C. Parra, M. Hobart: Interaction between the Chile Ridge and Chile Trench: Geophysical and geothermal evidence. J. Geophys. Res.,92 (1987), 495–520.

    Article  Google Scholar 

  11. S. Honda, S. Uyeda:. Thermal process in subduction zone - A review and preliminary approach on the origin of arc volcanism. In: D. Shimozuru and I. Yokoyama (Editors), Arc Volcanism - Physics and Tectonics. Terra Scientific Publ. Co., Tokyo, 1983, pp. 117–140.

    Google Scholar 

  12. D. P. McKenzie: Speculations on the consequences and causes of plate motions. Geophys. J. R. astron. Soc.,18 (1969), 1–32.

    Article  Google Scholar 

  13. S. Honda: Thermal structure beneath Tohoku, north-east Japan - a case study for understanding the detailed thermal structure of the subduction zone. Tectonophysics,112 (1985), 69–102.

    Article  Google Scholar 

  14. S. V. Henry: Terrestrial heat flow overlying the Andean subduction zone. Ph.D. Thesis, University of Michigan 1981, 194 pp.

  15. S. Uyeda, T. Watanabe: Terrestrial heat flow in western South America. Tectonophysics,83 (1982), 63–70.

    Article  Google Scholar 

  16. V. M. Hamza: Thermal structure of South American continental lithosphere during Archean and Proterozoic. Revista Brasileira de Geociencias,12 (1982), 149–159

    Google Scholar 

  17. C. R. B. Lister: On the thermal balance of a midocean ridge. Geophys. J.R. astr. Soc.,26 (1972), 465–509.

    Article  Google Scholar 

  18. R. N. Anderson, M. G. Langseth, J. G. Sclater: The mechanism of heat transfer through the floor of the Indian ocean. J. Geophys. Res.,82 (1977), 3391–3409.

    Article  Google Scholar 

  19. B. Parsons, J. G. Sclater: An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res.,82 (1977), 803–827.

    Article  Google Scholar 

  20. M. G. Langseth, M. A. Hobart, K. Horai: Heat flow in the Bering Sea. J. Geophys. Res.,85 (1980), 3740–3750.

    Article  Google Scholar 

  21. M. Yamano, S. Uyeda, Y. Aoki, T. H. Shipley: Estimates of heat flow derived from gas hydrates. Geology,10 (1982), 339–343.

    Article  Google Scholar 

  22. S. E. DeLong, W. M. Schwarz, R. N. Anderson: Thermal effects of ridge subduction. Earth Planet. Sci. Lett.,44 (1979), 239–246.

    Article  Google Scholar 

  23. M. Muñoz: Report of heat flux density in Chilean localities based on geochemical data of hot springs. Depto Geofísica, Univ. de Chile Santiago 1982, Unpubl. Report, 20 pp.

  24. C. A. Swanberg, P. Morgan: The silica heat flow interpretation technique: Assumptions and applications. J. Geophys. Res.,85 (1980), 7206–7214.

    Article  Google Scholar 

  25. R.O. Fournier, A. H. Truesdell: An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta,37 (1973), 1255–1275.

    Article  Google Scholar 

  26. C. Fouillac, G. Michard: Sodium/lithium ratio in water applied to geothermometry of geothermal reservois. Geothermics,10 (1981), 55–70.

    Article  Google Scholar 

  27. A. Lahsen: La actividad geothermal y sus relaciones con la tectónica y el volcanismo en el norte de Chile. In: Actas Primer Congreso Geológico Chileno, Santiago 1976, B105–B127.

  28. R. Merino: Hidrologia termal. Proc. Simp. Termal, Climático y Balneológico, Santiago 1979; 7 pp.

  29. H. Cusicanqui, W. A. J. Mahon, A. J. Ellis: The geochemistry of the El Tatio geothermal field. In: Proc. Second United Nations Symposium on the Development and Utilisation of Geothermal Resources, San Francisco, 1975, 703–711.

  30. A. Lahsen, P. Trujillo: El campo geotérmico de El Tatio, Chile. In: Proc. Second United Nations Symposium on the Development and Utilisation of Geothermal Resources, San Francisco 1975, 157–169.

  31. A. J. Ellis: Survey for geothermal development in Northern Chile. Preliminary geochemistry report, El Tatio geothermal field. Unpubl. U.N. Project Report, 1969.

  32. W. F. Giggenbach: The isotopic composition of waters from the El Tatio geothermal field, northern Chile. Geochim. Cosmochim. Acta,42 (1978), 979–988.

    Article  Google Scholar 

  33. A. De Grys: Some observationes on the hot springs of Central Chile. Water Resour. Res.,1 (1965), 415–428.

    Article  Google Scholar 

  34. S. Benado, A. Marín: Estudio y análisis de las aguas termominerales Baños de Colina. IDIEF, Fac. de Ciencias Químicas, Univ. de Chile, Santiago, 1975, 7 pp.

  35. R. O. Fournier, R. W. Potter: Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim. Cosmochim. Acta,43 (1979), 1543–1550.

    Article  Google Scholar 

  36. A. Lahsen: Características geoquímicas y origen de las aguas u de las termas de Chillán. Rev. Comunicaciones, Depto. Geología, Univ. de Chile, No 24 (1978), 35–48.

    Google Scholar 

  37. D. E. White, L. J. P. Muffler, A. H. Truesdell: Vapor-dominated hydrothermal systems compared with hot-water systems. Econ. Geol.,66 (1971), 75–97.

    Article  Google Scholar 

  38. D. E. White, J. D. Hem, G. A. Waring: Chemical composition of subsurface waters. In: M. Fleischer (Editor), Data of Geochemistry. U.S. Geol. Survey, prof. paper 440-F; 1963, 67 pp.

  39. W. F. Giggenbach: Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim Acta,52 (1988), 2749–2765.

    Article  Google Scholar 

  40. W. F. Giggenbach, R. Gonfiantini, B. L. Jangi, A. H. Truesdell: Isotopic and chemical composition of Parbati Valley geothermal discharges, NW-Himalaya, India. Geothermics,12 (1983), 199–222.

    Article  Google Scholar 

  41. K. J. Youngman: Hydrothermal alteration and fluid-rock interaction in the El Tatio geothermal field, Antofagasta province, Chile. Ms. Sc. Thesis, University of Auckland, 1984, 123 pp.

  42. R. James: The El Tatio geothermal field; test results, underground theory, power feasibility. Unpubl. U.N. Project Report 1974.

  43. P. Muffler, R. Cataldi: Methods for regional assessment of geothermal resources. Geothermics,7 (1978), 53–89.

    Article  Google Scholar 

  44. V. E. McKelvey: Mineral resource estimates and public policy. Amer. Scientist,60 (1972), 32–40.

    Google Scholar 

  45. Y. D. Diadkin: Technical, physical and economic problems in the development and use of petrogeothermal resources. In: A. Rapolla, G.V. Keller and J.S. Moore (Editors), Geophysical Aspects of the Energy Problem. Elsevier, Amsterdam, 1979, 157–204.

    Google Scholar 

  46. A. H. Lachenbruch, J. H. Sass: Heat flow in the United States and the thermal regime of the crust. In: J.G. Heacock (Editor), The Earth's Crust. AGU Geophys. Monogr.,20 (1977), 626–675.

    Google Scholar 

  47. M. L. Sorey, R. E. Lewis: Convective heat flow from hot springs in the Long Valley Caldera, Mono County, California. J. Geophys. Res.,81 (1976), 785–791.

    Article  Google Scholar 

  48. G. Schwarz, V. Haak, E. Martínez, J. Bannister: The electrical conductivity of the andean crust in northern Chile and southern Bolivia as inferred from magnetotelluric measurements. J. Geophys.,55 (1984), 169–178.

    Google Scholar 

  49. E. I. Parkhkomenko: Electrical resistivity of minerals and rocks at high temperature and pressure. Rev. Geophys. Space Phys.,20 (1982), 193–218.

    Article  Google Scholar 

  50. E. Falcon, O. Castillo, M. Valenzuela: Hidrogeología de la cuenca de Santiago. Instituto de Investigaciones Geológicas, Chile; Publicación Especial No 3, 1970, 46 pp., 21 ill.

  51. M. Muñoz: Fuentes geotermales de baja entalpía. Minerales (Rev. del Inst. de Ing. de Minas), Santiago,36 (1981), 19–23.

    Google Scholar 

  52. L. Smith, D. S. Chapman: On the thermal effect of groundwater flow, 1, Regional scale systems. J. Geophys. Res.,88 (1983), 593–608.

    Article  Google Scholar 

  53. A. D. Woodbury, L. Smith: On the thermal effects of three-dimensional groundwater flow. J. Geophys. Res.,90 (1985), 759–767.

    Article  Google Scholar 

  54. D. D. Blackwell, J. L. Steele, M. K. Frohme, C. F. Murphey, G. R. Priest, G. L. Black: Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths and geology. J. Geophys., Res.,95 (1990), 19475–19493.

    Article  Google Scholar 

  55. B. W. Tichelaar, L. J. Ruff: Seismic coupling along the Chilean subduction zone. J. Geophys. Res.,96 (1991), 11997–12022.

    Article  Google Scholar 

  56. J. Van den Beukel, R. Wortel: Temperature and shear stresses in the upper part of a subduction zone. Geophys. Res. Lett.,14 (1987), 1057–1060.

    Article  Google Scholar 

  57. J. Van den Beukel, R. Wortel: Thermo-mechanical modelling of arc-trench regions. Tectonophysics,154 (1988), 177–193.

    Article  Google Scholar 

  58. G. Schwarz, G. Chong, D. Krüger, E. Martínez, W. Massow, V. Rath, J. Viramonte: Crustal high conductivity zones in the southern central Andes and their tectonic implications. In: Abstracts Final Workshop on the Structure and Evolution of the Central Andes in Northern Chile, Southern Bolivia and Northwestern Argentina, Freie Universität-Technische Universität, Berlin 1990, 99–100.

    Google Scholar 

  59. S. Uyeda: Subduction zones: An introduction to comparative subductology. Tectonophysics,81 (1982), 133–159.

    Article  Google Scholar 

  60. Ya. B. Smirnov, V. M. Sugrobov: Terrestrial heat flow in the northwestern Pacific. Tectonophysics,83 (1982), 109–122.

    Article  Google Scholar 

  61. V. A. Magnitsky: The Internal Structure and Physics of the Earth. NASA TT, Springfield 1967, 448 pp.

  62. G. D. Afanasiev: Magmatic Formations and General Problems of Geological Petrology — Selected Papers. Nauka, Moscow, 1981, 514 pp. (in Russian).

    Google Scholar 

  63. A. M. Dziewonski: Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res.,89 (1984), 5929–5952.

    Article  Google Scholar 

  64. J. H. Woodhouse, A. M. Dziewonski: Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res.,89 (1984), 5953–5986.

    Article  Google Scholar 

  65. R. L. Woodward, G. Masters: Global upper mantle structure from long-period differential travel times. J. Geophys. Res.,96 (1991), 6351–6377.

    Article  Google Scholar 

  66. Y. S. Zhang, T. Tanimoto: Three-dimensional modelling of upper mantle structure under the Pacific Ocean and surrounding area. Geophys. J. Int.,98 (1989), 255–269.

    Article  Google Scholar 

  67. T. Tanimoto: Long-wavelength S-wave velocity structure throughout the mantle. Geophys. J. Int.,100 (1990), 327–336.

    Article  Google Scholar 

  68. P. M. Shearer: Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases. J. Geophys. Res.,96 (1991), 18147–18182.

    Article  Google Scholar 

  69. W. Spence: Slab pull and the seismotectonics of subducting lithosphere. Rev. Geophys.,25 (1987), 55–69.

    Article  Google Scholar 

  70. N. Onuma, L. López-Escobar: Possible contribution of the asthenosphere below the subducted oceanic lithosphere to the genesis of arc magmas: Geochemical evidence from the Andean southern volcanic zone (33–46°S) J. Volcanol. Geotherm. Res.,33 (1987), 283–298.

    Article  Google Scholar 

  71. A. Cisternas: Crustal structure of the Andes from Rayleigh wave dispersion. Bull. Seism. Soc. Am.,51 (1961), 381–388.

    Article  Google Scholar 

  72. D. E. James: Andean crustal and upper mantle structure. J. Geophys. Res.,76 (1971), 3246–3271.

    Article  Google Scholar 

  73. P. R. Jones: Crustal structures of the Perú continental margin and adjacent Nazca plate, 9°S latitude. In: L. D. Kulm, J. Dymond, E. J. Dasch and D. M. Hussong (Editors), Nazca Plate: Crustal Formation and Andean Convergence. Geol. Soc. Am., Memoir154 (1981), 423–443.

    Article  Google Scholar 

  74. L. D. Kulm, W. J. Schweller, A. Masías: A preliminary analysis of the subduction processes along the Andean continental margin, 6° to 45°S. In: M. Talwani and W. C. Pitman, III (Editors), Island Arcs, Deep Sea Trenches and Back-Arc Basins. Am. Geophys. Union, Washington D.C., 1977, 285–301.

    Chapter  Google Scholar 

  75. L. D. Kulm, R. A. Prince, W. French, S. Johnson, A. Masías: Crustal structure and tectonics of the central Perú continental margin and trench. In: L. D. Kulm, J. Dymond, E. J. Dasch and D. M. Hussong (Editors), Nazca Plate: Crustal Formation and Andean Convergence. Geol. Soc. Am., Memoir154 (1981), 445–468.

    Article  Google Scholar 

  76. P. Acevedo, M. Pardo: Estructura cortical de Chile central (32.5° – 34.5°S) utilizando el método de velocidad aparente mínima de ondas P. Rev. Tralka Depto. Geofísca, Univ. de Chile,2 (1985), 371–378.

    Google Scholar 

  77. P. Giese: Crustal evolution of the central Andes. In: Abstracts Final Workshop on the Structure and Evolution of the Central Andes in Northern Chile, Southern Bolivia and Northwestern Argentina, Freie Universität-Technische Universität, Berlin, 1990, 65–66a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, M., Hamza, V. Heat flow and temperature gradients in Chile. Stud Geophys Geod 37, 315–348 (1993). https://doi.org/10.1007/BF01624604

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01624604

Keywords

Navigation